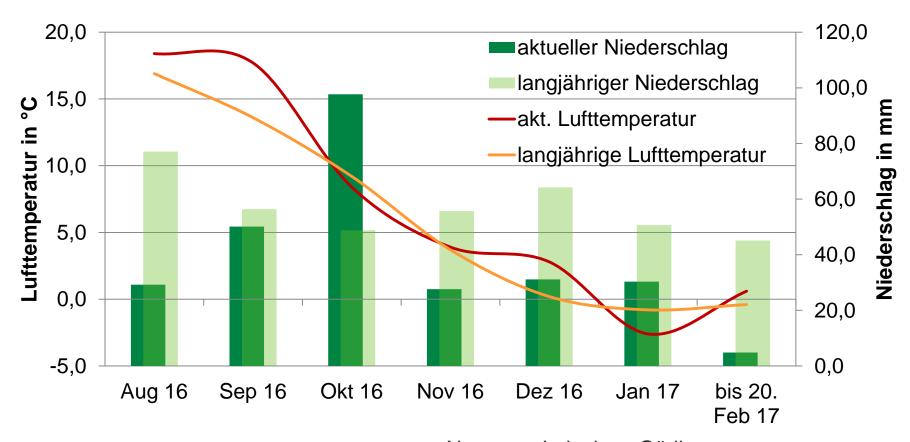


Aktuelle Hinweise zur Düngung 2017

Erträge 2016 in Sachsen (Ø)

	Ø 2009-15	2016			
	dt/ha	dt/ha	% zu 2009-15	% zu 2015	
WWeizen	73,5	81,2	111	102	
WGerste	67,6	77,9	115	101	
WRaps	38,6	37,1	96	96	
Silomais	397,9	429,5	108	116	
Kartoffel	411,3	416,4	101	104	
Zuckerrübe	699,7	713,3	102	100	



Quelle: Stat. Landesamt Kamenz

- Erträge insgesamt überdurchschnittlich
- 81,2 dt/ha Weizen zweitbester Ertrag nach 2014, noch vor 2015
- sehr gute Wintergerstenerträge. 77,9 dt/ha
- Winterraps mit 37,1 dt/ha unter dem mehrjährigen Mittel
- trotz teilweise sehr schneller und zeitiger Abreife insgesamt gute Solomaiserträge
- insgesamt sehr gutes Jahr im Gegensatz zu einigen Regionen Westdeutschlands
- vergleichsweise geringe regionale Unterschiede

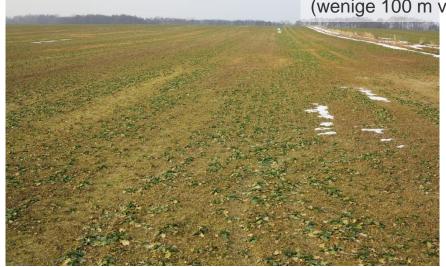
Witterung 2016/2017 Standort Nossen

Temperaturabweichung: Niederschlag in % vom Normalwert:

Nossen	Leipzig	Görlitz
1,0	0,4	0,3
68	76	85

extreme Trockenheit Mitte August - Mitte September

Arbeiten in Grasbestand am 16.09.2016


Rapsaussaat am 24.08.2016

Bestandesentwicklung Winterraps bis Februar 2017

- -teilweise Umbruch
- -Bestände erholten sich im Herbst meist
- -meist normale Bestandesentwicklung, aber oft mit Bestandeslücken
- -teilweise auch üppige Bestände
- -abgefrorene Blätter, z.T. erheblicher Umfang
- -gute Wurzelausbildung

abgefrorene Blätter in üppigem Winterrapsbestand am 20.02.2017

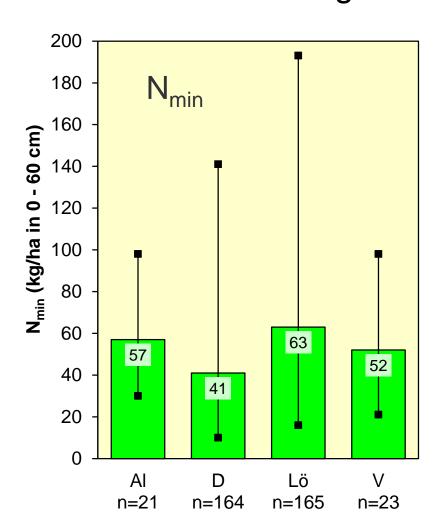
Entwicklung eines lückigen Winterrapsbestandes

Bestandesentwicklung Winterweizen

- teilweise späte Aussaaten (zu hohe Bodenfeuchte)
- meist gleichmäßige, nicht zu weit entwickelte Bestände
- keine Weiterentwicklung über Winter

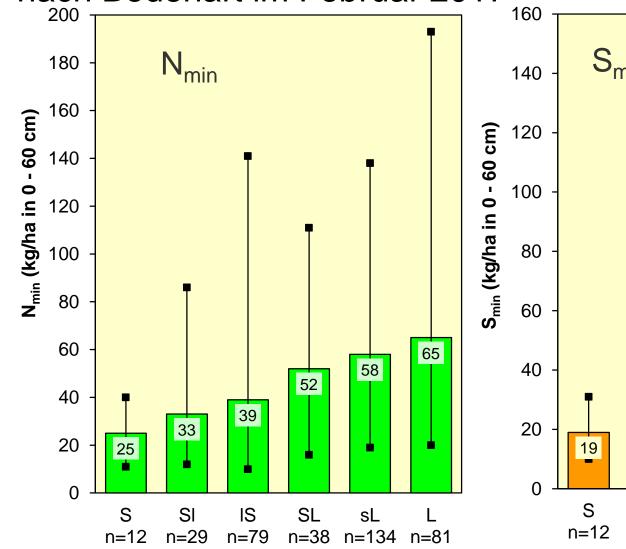
Zwischenfrüchte

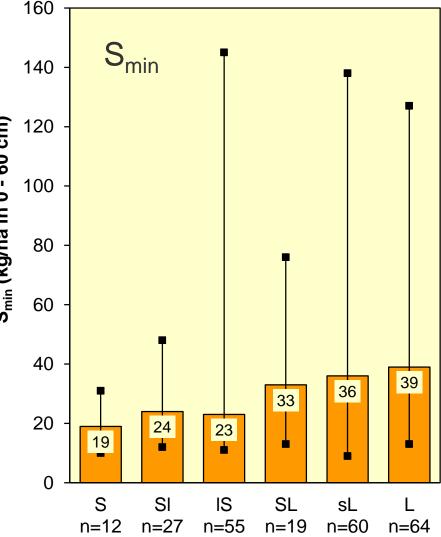
- auf Grund der Trockenheit differenzierte Bestandesentwicklung
- meist noch ordentliche Bestände
- sicher abgefroren



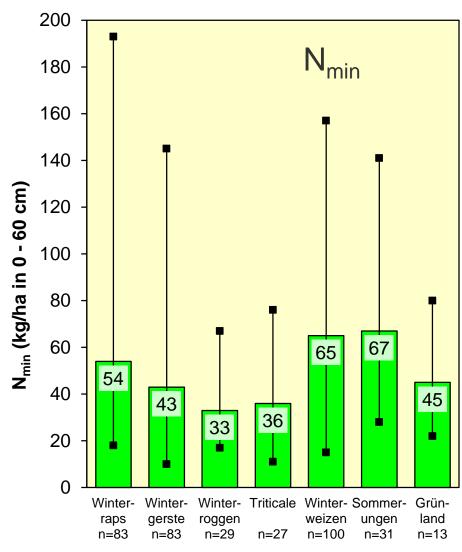
Senf-Zwischenfrucht (und Rapsfeld) am 21.10.2016 und 28.01.2017

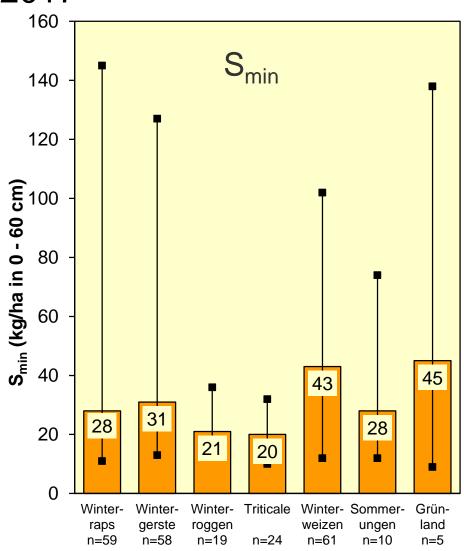
N_{min}- und S_{min} in 0 - 60 cm der analysierten Bodenproben nach Bodenentstehung im Februar 2017





N_{min}- und S_{min} in 0 - 60 cm der analysierten Bodenproben nach Bodenart im Februar 2017





N_{min}- und S_{min} in 0 - 60 cm der analysierten Bodenproben nach Fruchtarten im Februar 2017

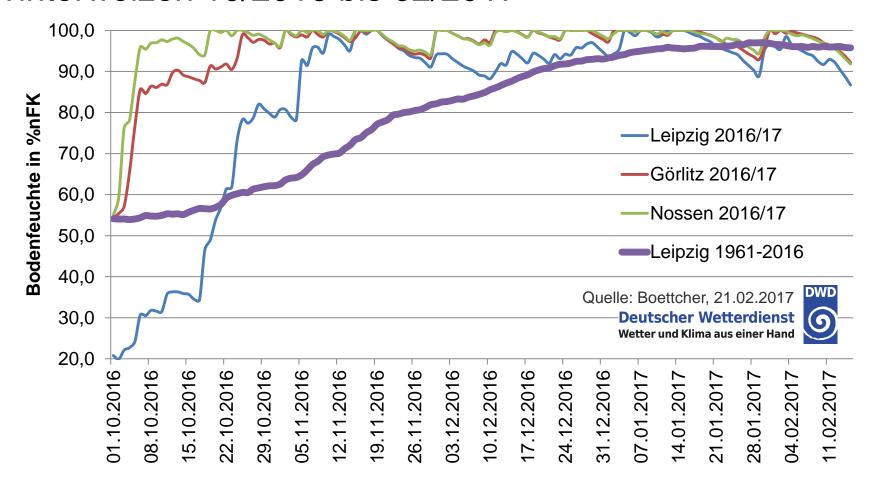
N_{min} in 0 - 60 cm der Bodenproben im Februar 2017

(verwendbar für N-Düngebedarfsermittlung nach DüV)

	S	SI	IS	SL	sL	L
Winterraps	30	42	42	58	57	65
Wintergerste	23	34	22	35	49	60
Winterroggen, Wintertriticale		26	31	54	43	60
Winterweizen	_ 1)	29	61	58	69	68
vor Sommerungen	_ 1)	_ 1)	68	60	6	8

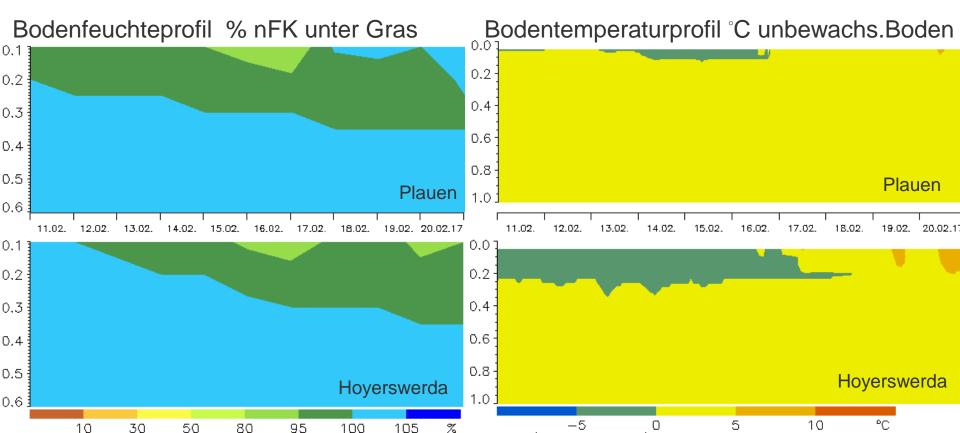
¹⁾ keine Bodenproben vorliegend

aktuelle N_{min}-Situation Zusammenfassung



- meist gute N-Ausschöpfung durch die gute Ernte 2016
- durchschnittliche N-Mineralisierung im Herbst; meist schlechtere Pflanzenentwicklung als in Vorjahren => geringere N-Aufnahme in 2016; bis Februar keine weiteres Wachstum
- insgesamt unterdurchschnittliche Niederschläge, aber zeitige Bodenwasserauffüllung,
 N- und S-Verlagerung am ehesten auf leichten und durchlässigen Standorten
- Ø 52,0 kg N_{min} /ha ; 31,5 kg S_{min} /ha in 0-60 cm Bodentiefe (Ø 2012-16: 37,1 kg N_{min} /ha)
 - deutlichere Unterschiede zwischen Bodenarten, Kulturarten als 2016
 - klare Zunahme mit der Bodenqualität: S < SI < IS < SL < sL < L D < V < AI < Lö
 - WRaps: sehr hohe Werte! WWeizen: sehr hohe Werte!
 - WTriticale, WRoggen, WGerste im Bereich des mehrjährigen Mittels
- Düngeverordnung: vor Aufbringung wesentlicher N-Mengen ist der im Boden verfügbare N vom Betrieb auf jedem Schlag/Bewirtschaftungseinheit für den Zeitpunkt der Düngung, mindestens aber jährlich zu ermitteln (außer Dauergrünlandflächen),
 - durch Untersuchung repräsentativer Proben
 - nach Empfehlung der zuständigen Stelle/von dieser empfohlener Beratungseinrichtung:
 - a) durch Übernahme der Ergebnisse vergleichbarer Standorte
 - b) durch fachspezifische Berechnungs-/Schätzverfahren
- => Empfehlung für N-Düngebedarfsermittlung: schlagspezifische N_{min}-Untersuchung! Vor allem auf im Herbst gedüngten und langjährig organisch gedüngten Flächen.

Bodenfeuchte 0-60 cm unter Winterweizen 10/2016 bis 02/2017



- geringe Bodenfeuchtegehalte im September mit regionaler Differenzierung
- ab November auf fast allen Standorten Bodenwasser in 0-60 cm Bodentiefe aufgefüllt

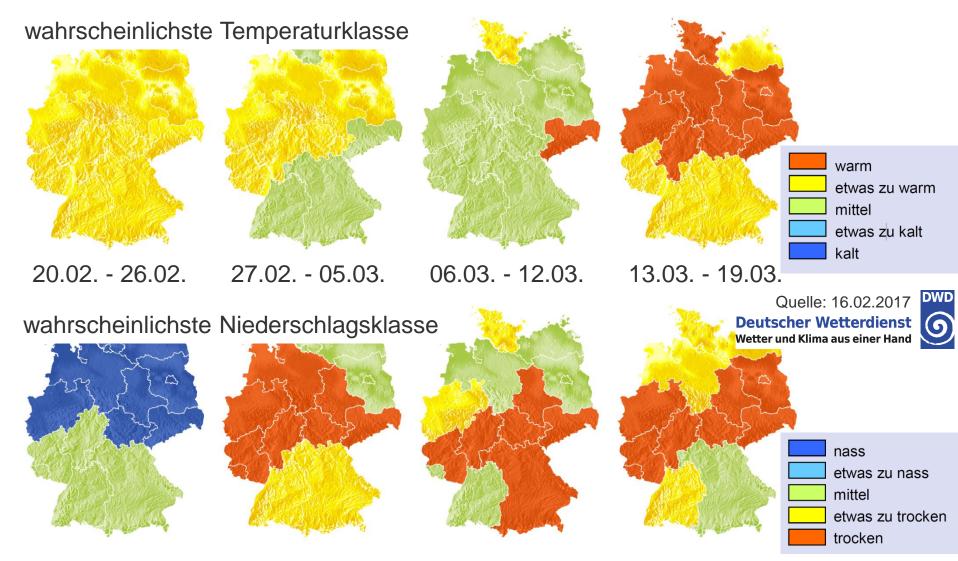
Bodenfeuchte und -temperatur 11. bis 20.02.2017 in Sachsen

- im Februar leichter Rückgang der Bodenfeuchte in den oberen 30 cm oberflächig beginnende Abtrocknung, dadurch teilweise Befahrbarkeit gegeben
- aktuell auf fast allen Standorten in 0-60 cm Bodentiefe Bodenwasser > 95 % aufgefüllt
- durch Niederschläge der vergangenen Tage teilweise wieder > 100 %
- kein Bodenfrost mehr (außer sehr hohe Lagen und ganz im NordOsten)

Hinweise zur Stickstoff- und Schwefeldüngung im Frühjahr 2017

LANDESAMT FÜR UMWELT **UND GEOLOGIE**

- Bodenwasservorräte sind bis 60 cm aufgefüllt
- Aufnahmefähigkeit und Befahrbarkeit vor Ort prüfen
- Vegetationsbeginn evtl. Ende nächste Woche
- für die Bemessung der Andüngung jeweilige N_{min}/S_{min}-Gehalte, Bestandesentwicklung und Ertragserwartung beachten
- Ziehen Sie auf Ihren Flächen N_{min}-Proben!
- Raps: verbreitet normal entwickelte (z.T. lückige), aber auch üppige Bestände
 - N-Düngung trotzdem biomasseabhängig bemessen,
 - Blattverluste am konkreten Schlag prüfen
- Getreide: meist gleichmäßige, normal entwickelte Bestände,
- Beachtung von eventuellen Unterschieden innerhalb der Schläge
- Beproben Sie ihre organischen Düngemittel regelmäßig!
- Empfehlung: Beratungsprogramm BEFU nutzen (künftig BESyD)


Hinweise zur Stickstoff- und Schwefeldüngung im Frühjahr 2017

- hohe N_{min}- Werte (insbes. WWeizen und WRaps) geringe S_{min}-Werte (nur 3 kg über dem Minimumwert von 2016)
- damit entsprechend geringerer N-Düngebedarf als 2016 zu erwarten
- in diesem Frühjahr durchschnittliches N-Mineralisierungspotenzial zu erwarten
- für zeitige Applikationstermine (insbes. beim Raps) und Gabenzusammenfassung bevorzugt stabilisierte N-Dünger nutzen
- vor der 2. und 3. N-Gabe unbedingt Schlag-(Teilschlag-)spezifische Bestandesentwicklung erfassen und berücksichtigen
- Schwefel-Düngung zu Raps und Getreide auf leichten, diluvialen, durchlässigen oder flachgründigen Böden zu Vegetationsbeginn auch auf besseren Böden auf S zu Vegetationsbeginn achten
- Untersuchen Sie Ihre Flächen auf P, K, Ca (pH)- Versorgung, reagieren Sie entsprechend bei Düngungsbedarf

Wie sind die Prognosen für Temperatur und Niederschlag?

Was ändert sich durch die LANDESAM LAN novellierte Düngeverordnung? (Auswahl)

LANDESAMT FÜR UMWELT LANDWIRTSCHAFT UND GEOLOGIE

Quelle: nach: http://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/ _Texte/Duengepaket_Novelle.html#doc8917596bodyText1 am 15.02.2017

- N-Düngebedarfsermittlung auf Acker- und Grünland wird bundeseinheitlich geregelt und konkretisiert
- Einführung ertragsabhängiger standort- und kulturartenbezogener Obergrenzen für N-Düngung
- Präzisierung der Vorgaben für Aufbringen von N- und P-haltigen Düngemitteln auf überschwemmten, wassergesättigten, gefrorenen oder schneebedeckten Boden

- Verlängerung der Zeiträume, in denen keine Düngemittel ausgebracht werden dürfen (Ackerland: nach Ernte der Hauptfrucht bis 31.01.; Grünland: 01.11.- 31.01., erstmals Sperrzeit für die Aufbringung von Festmist und Kompost: 15.12.- 15.01.)
- zulässige N-Gabe im Herbst wird beschränkt auf 30 kg NH₄-N/ha oder 60 kg N_t/ha
- Vergrößerung der Abstände für N- und P-Düngung in der Nähe von Gewässern und im hängigen Gelände

Was ändert sich durch die novellierte Düngeverordnung? (Auswahl)

LANDESAMT FÜR UMWELT LANDWIRTSCHAFT UND GEOLOGIE

Quelle: nach: http://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/ _Texte/Duengepaket_Novelle.html#doc8917596bodyText1 am 15.02.2017

- Verringerung der Kontrollwerte im Nährstoffvergleich (ab 2020 ≤ 50 kg N/ha)
- Einführung bundeseinheitlicher Vorgaben für Fassungsvermögen von Anlagen zur Lagerung von:
 - flüssigen Wirtschaftsdüngern und flüssigen Gärrückständen aus dem Betrieb einer Biogasanlage (grundsätzlich größer als benötigte Kapazität zur Überbrückung der Sperrfristen, mindestens jedoch 6 Monate, Betriebe mit hohem Tierbesatz oder ohne eigene Ausbringungsflächen: ab 2020 mindestens 9 Monate Lagerkapazität)
 - Festmist, festen Gärrückständen und Kompost (zwei Monate)
- Verpflichtung der Länder zum Erlassen von mindestens drei zusätzlichen Maßnahmen aus einem vorgegebenem Katalog:
 - in Gebieten mit hoher Nitratbelastung
 - in Gebieten, in denen stehende oder langsam fließende oberirdische Gewässer durch P, was nachweislich aus der Landwirtschaft stammt, eutrophiert sind

Was ändert sich durch das angepasste Düngegesetz? (Auswahl)

Quelle: Auswahl aus: http://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/ _Texte/Duengepaket_Novelle.html#doc8917596bodyText1 am 15.02.2017

- ab 2018 müssen tierhaltende Betriebe mit > 2,5 GV/ha und > 30 ha LN oder > 50 GV eine Stoffstrombilanz erstellen
 ab 2023 gilt dies für alle Betriebe mit > 20 ha LN oder > 50 GV
- Biogasgärreste werden in die 170 kg N/ha Regelung aufgenommen.
- => nur durch Änderung des Düngegesetzes wird Verabschiedung der DüV möglich

Weiteres Verfahren Düngegesetz, Düngeverordnung

- Düngegesetz am 16.02.2017 im Bundestag beschlossen (seine Änderung ist Voraussetzung für die Novelle der Düngeverordnung)
- Düngegesetz soll am 10.03.2017 im Bundesrat verabschiedet werden
- Novelle Düngeverordnung soll am 31.03.2017 im Bundesrat verabschiedet werden, dabei sind noch Änderungen zu erwarten; aktueller Entwurf vom 15.02. im Internet des BMEL

Novellierung Düngeverordnung Wirtschaftsdüngermanagement

- erstmals Sperrfrist für Festmist von Huf- u. Klauentieren u. Kompost (15.12.-15.01.)
- Verlängerung der Sperrfrist: auf Ackerland um 1 Monat auf Grünland um 15 Tage diese gilt nunmehr für alle Düngemittel mit wesentlichem N-Gehalt
- nur wenige Ackerkulturen dürfen nach Ernte der Hauptfrucht mit N gedüngt werden (Winterraps, Wintergerste nach Getreide, Zwischenfrüchte, Feldfutter)
- die dabei maximal ausbringbare Menge Stickstoff sinkt
 von 80/40 auf 60 kg N_t/ha oder 30 kg NH₄-N/ha (für alle Düngemittel)
- => Deutliche Reduzierung der im Sommer/Herbst ausbringbaren Menge organischer (org-miner.) Düngemittel!
- => Große Herausforderung für viele Betriebe!

Novellierung Düngeverordnung Sperrfristen für N-haltige Düngemittel

Novellierung der DüV Reduzierung im Spätsommer/Herbst LANDESAN LANDESAN

ausbringbarer Menge Gülle/Gärreste (unverbindliche Überschlagsrechnung)

Voraussetzung: - es besteht entsprechender N-Düngebedarf

- 100% Anbau von Zwischenfrüchten vor Mais und Hackfrüchten

=> In der Praxis wahrscheinlich weitere Reduzierung.

Fruchtartenanteile im Betrieb	z.Z. mög- lich (% d. Fläche)	nach Novellie- rung möglich (% d. Fläche)	mit 80/40=>60/30 ausbringbare Menge (%)
33% WWeizen, 33% ZF/Mais, 33% WRaps	100	66	50
50% WWeizen, 25% ZF/Mais, 25% WRaps	100	50	37
30% WWeizen, 20% WGerste, 20% WRaps, 20% ZF/Mais, 5% ZF/Zuckerr., 5% Kör.legum.	95	65	49
30% WRoggen, 20% WRaps, 20% ZF/Mais, 20% WGerste, 10% WWeizen	100	60	45
30% WRoggen, 40% ZF/Mais, 10% WRaps, 10% Körnerlegum., 10% WTriticale	90	50	37
30% WWeizen, 30% ZF/Mais o. Feldfutter, 15% SoGerste, 20% WRaps, 5% Kör.legu.	95	50	37

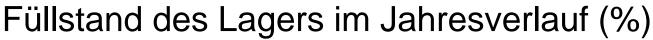
Deutlich weniger Gülle/Gärrest vor Winter - wie reagieren?

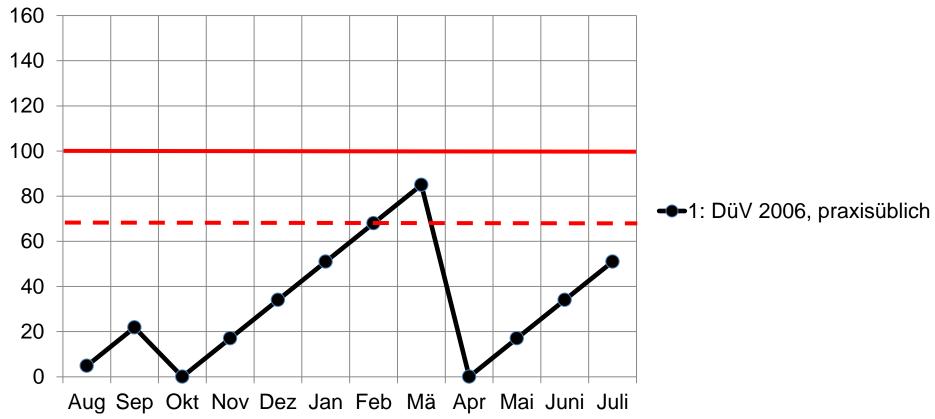
- Verschiebung der Ausbringung: in das Frühjahr (zu Wintergetreide, Raps)
 (auf Grünland im Herbst)
 - Boden darf nicht überschwemmt, wassergesättigt, gefroren, schneebedeckt sein
 - max. 60 kg Ges.N/ha auf gefrorenen Boden, wenn dieser am Tag des Aufbringens auftaut und aufnahmefähig wird
 - Grenzen bei Befahrbarkeit beachten
- Ausbringungstechnik:
 - Auslastung wird sinken => Kapazität erhöhen (selbst oder überbetrieblich)
 - weniger Direkteinarbeitung (Güllegrubber), mehr Schlauch-/Schlitztechnik
 - Ausbringung kleiner Mengen ermöglichen (Gärrest mit 4 kg NH₄-N/m³: 30 kg NH₄-N/ha = 7,5 m³/ha)
- maximaler Zwischenfruchtanbau
- Fruchtfolge anpassen (Feldgras statt Mais?)
- Ausbringungsplan im Jahresverlauf erstellen
- Gärrest-Aufbereitung oder Verkauf?
- je nach verfügbarem Lagerraum: Kapazität erhöhen
- => Deutliche Auswirkungen! Bereiten Sie sich vor!

Gülle/Gärrestmanagement Auswirkung, Handlungsoptionen

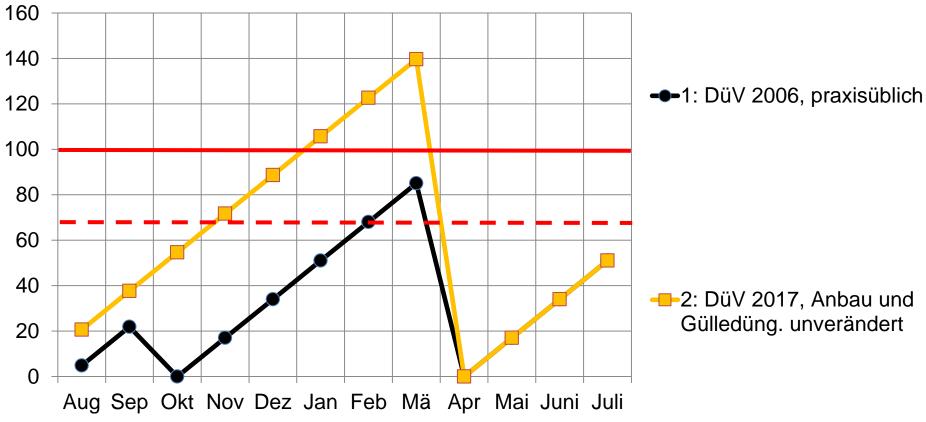
Beispielrechnung für fiktiven Ackerbaubetrieb 900 ha: je 300 ha Silomais und WWeizen; je 150 ha WRaps und WGerste

500 GV Milchkühe (0,6 GV/ha) Gülleanfall: 850 m³/Mon N-Gehalt: 3,8 kg N/m³ Lagerkapazität: 5.000 m³ (5,9 Monate)


Varianten:

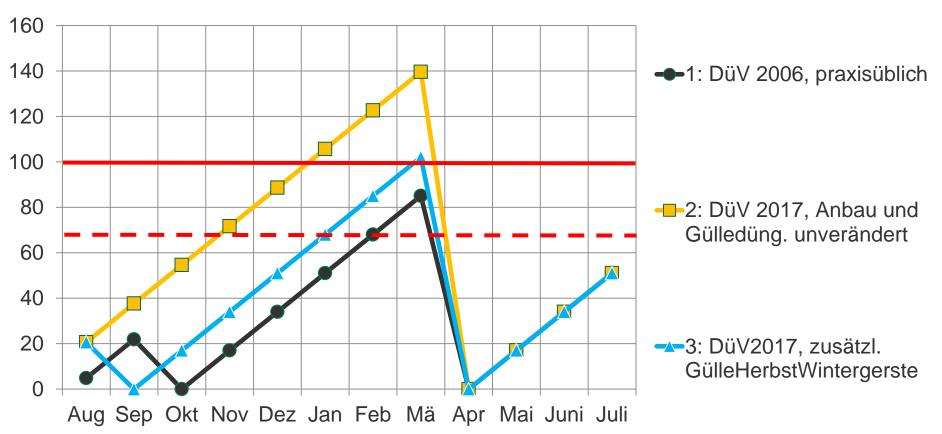

- 1: DüV 2006, praxisüblich
- 2: DüV 2017, Anbau und Gülledüngung unverändert
- 3: DüV 2017, Gülle im Herbst zu Wintergerste
- 4: DüV 2017, wie Var. 3, zusätzl. im Frühjahr Gülle zu 50% des Weizens
- 5: DüV 2017, wie Var. 3, zusätzlich Gülle zu Zwischenfrucht vor Mais
- 6: DüV 2017, wie Var. 3, zusätzlich 1000 m³ mehr Lagerraum
- 7: DüV 2017, wie Var. 3, aber je 150 ha Ackergras und Mais
- veranschlagter Standort, Ertrag, Düngebedarf können natürlich abweichen
- vereinfacht ohne Abzug von Lagerungs- und Ausbringungsverlusten
- N-MDÄ 50 berücksichtigt
- Immer unterstellt, dass zu den genannten Zeitpunkten der genannte Düngebedarf tatsächlich besteht! (z.B. im Herbst zu Winterraps, Wintergerste, Zwischenfrucht)

Gülle/Gärrestmanagement Auswirkung, Handlungsoptionen Eüllstand des Lagers im Jahresy

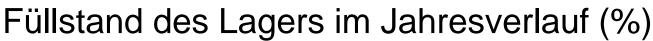

- Lagerkapazität rechnerisch nie überschritten
- Aber Kapazität bereits nach weniger als 1 Monat Reserve überschritten!

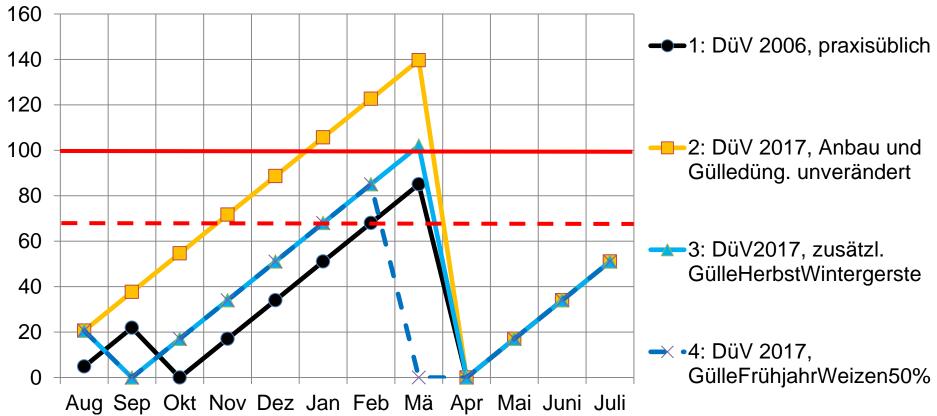
Gülle/Gärrestmanagement Auswirkung, Handlungsoptionen Eüllstand des Lagers im Jahresv

LANDESAMT FÜR UMWELT LANDWIRTSCHAFT UND GEOLOGIE


- Güllemenge theoretisch ausbringbar
- Menge reicht jedoch im Frühjahr nicht aus
- ab Januar nicht ausreichender Lagerraum

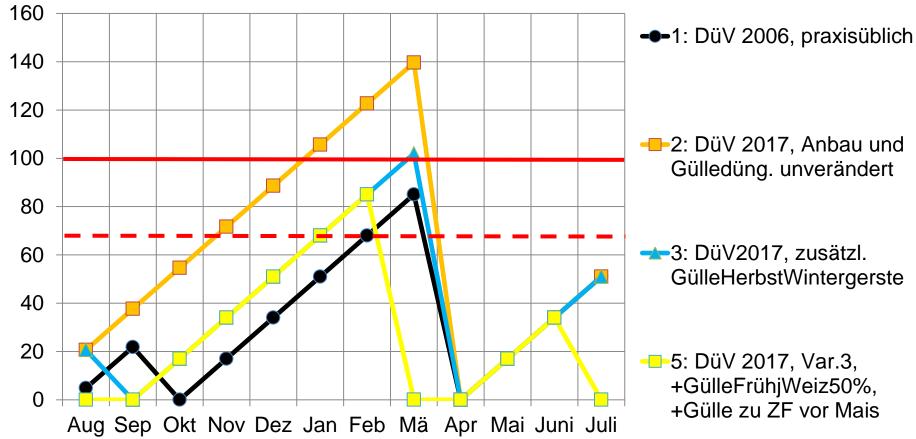
Gülle/Gärrestmanagement Auswirkung, Handlungsoptionen




- Güllemenge theoretisch ausbringbar
- Menge reicht in Frühjahr und September nicht aus
- im März nicht ausreichender Lagerraum, ab Feb. kaum Lagerraumreserven

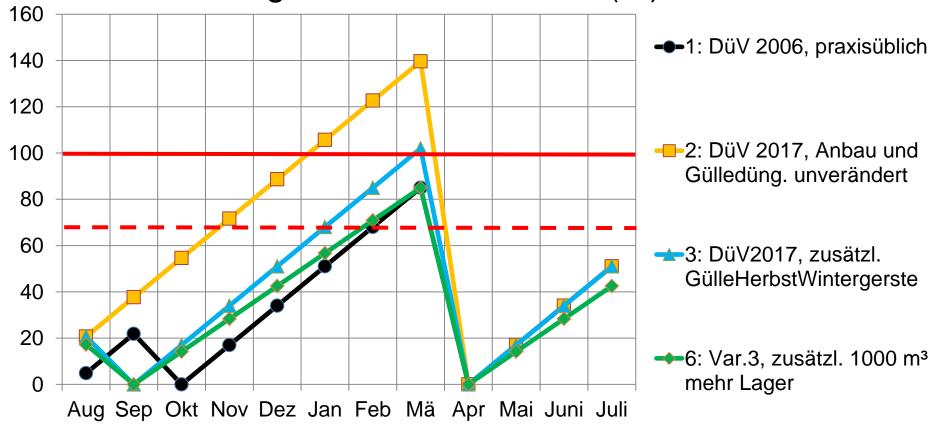
Gülle/Gärrestmanagement Auswirkung, Handlungsoptionen Füllstand des Lagers im Jahresy

LANDESAMT FÜR UMWELT LANDWIRTSCHAFT UND GEOLOGIE


- -anfallende Gülle ist in dieser Menge ausbringbar, reicht jedoch in Frühjahr u. Sept. nicht aus
- -Lagerkapazität reicht aus (jedoch < 1 Monat Reserve) Arbeitsspitze im März/April
- -zusätzliche Ausbringung im Frühjahr zu WGerste, WRaps oder 2. Gabe WWeizen nicht möglich, da Lager leer

Gülle/Gärrestmanagement Auswirkung, Handlungsoptionen Eüllstand des Lagers im Jahresy

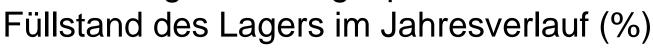
- Zwischenfrucht bringt nur geringe Verbesserung
- anfallende Gülle in dieser Menge ausbringbar, reicht jedoch März/April, Juli-September nicht
- Lagerkapazität reicht, aber < 1 Monat Reserve

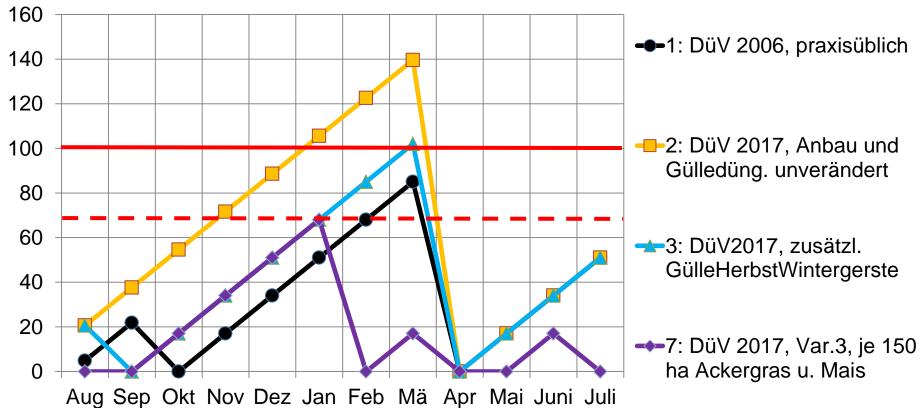

- Arbeitsspitze im März/April

Gülle/Gärrestmanagement Auswirkung, Handlungsoptionen

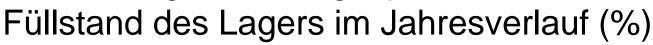
LANDESAMT FÜR UMWELT LANDWIRTSCHAFT UND GEOLOGIE

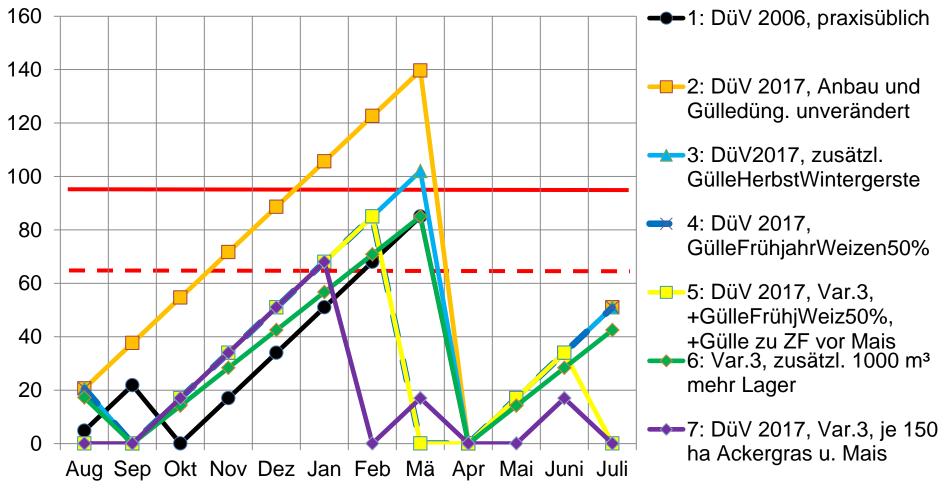
Füllstand des Lagers im Jahresverlauf (%)




- anfallende Gülle ist in dieser Menge ausbringbar, reicht jedoch im April und September nicht
- Lagerkapazität reicht, jedoch nur 1 Monat Reserve, dies lässt sich aber durch Weizen/Gerstedüngung ab März evtl. entschärfen

Gülle/Gärrestmanagement Auswirkung, Handlungsoptionen Füllstand des Lagers im Jahresy




- Ackergras bringt deutliche Verbesserung, da verteilt über das Jahr und Menge hoch
- anfallende Gülle ist in dieser Menge ausbringbar, reicht aber bei Weitem nicht aus
- Lagerkapazität reicht deutlich aus, ca. 2 Monate Puffer

Gülle/Gärrestmanagement Auswirkung, Handlungsoptionen

Gülle/Gärrestdüngung 02/2017

- im Flachland teilweise bereits ab 1.2.2017 Befahrbarkeit u. Aufnahmefähigkeit gegeben hier: jeweils sehr gutes Ausbringungsbild
- Vorgaben der aktuellen Düngeverordnung beachten!

Schlitzdüngung Feldgras 03.02.2017

Gülledüngung im Frühjahr mögliche Probleme

bei hoher Bodenfeuchte: Fahrspuren mit bleibenden Wuchsdepressionen, hier in Weizenbestand am 03.06.2016 nach Gülleddüngung im Frühjahr

bei späterer Gülledüngung: breite Fahrgassen mit evtl. bleibenden Wuchsdepressionen hier am 14.05.2013

Bilanzierungs- und Empfehlungs- LANDESAMT FÜR UMWELT System Düngung BESyD

Ziel:

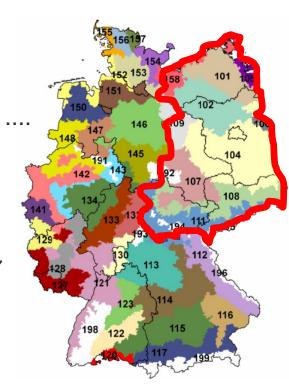
- gemeinsames Düngebedarfs- und Bilanzierungsprogramm für mehrere Bundesländer mit einheitlicher Methodik

- Umsetzung der aktuellen gesetzlichen Rahmenbedingungen

Nutzer: Landwirte, Berater, Labore, Ämter, Forschung

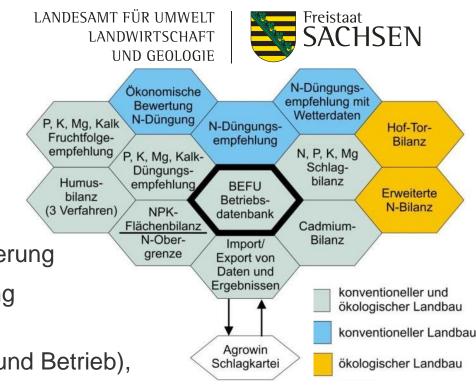
Kosten: kostenfreie Bereitstellung über die Amter/Landesanstalten

Grundlage:


- sächsisches Programm BEFU mit jahrzehntelanger Entwicklung und Praxisanwendung

- umfangreiche Abstimmungen zu Methodik, Fruchtarten, Sollwerten, Berechnungswegen, berücksichtigte Faktoren

- langjährige Versuchs-, Praxisdaten und Expertenwissen
- einheitliche Hintergrunddaten (mit sehr großem Umfang)
- läuft auf dem Rechner des Nutzers (Arbeiten an online-Version haben begonnen, aufwändig)


Ziel der Fertigstellung: nicht vor Spätsommer/Herbst 2017 (nur wenn Novellierung DüV abgeschlossen ist und dabei keine wesentlichen Änderungen mehr erfolgen)

Hinweis: Darstellungen erfolgen hier mit Stand von 20.02.2017. Es sind auf jeden Fall noch Änderungen zu erwarten.

Was wird im Programm umgesetzt?

- alle Bausteine des Programms BEFU (mit Auswahlmöglichkeit für Bundesländer)
- alle Forderungen der novellierten DüV für Düngebedarfsermittlung, Nährstoffbilanzierung
- fachlich erweiterte Düngebedarfsermittlung einheitlich nach Boden-Klima-Raum
- langjährige Datenspeicherung (je Schlag und Betrieb), weiterhin Nutzung Ihrer Daten aus BEFU
- verschiedene Ausgabelisten für Daten und Berechnungen, Ausgabeformulare zur Vorlage für Kontrollen (Düngebedarf, Bilanzierung) Import- und Export-Schnittstellen (Labore, Schlagdatei)
- umfangreiche Hintergrunddaten für Berechnungen und als Eingabehilfe (Nährstoffgehalte von Kulturarten, Düngemitteln (miner., org.), Sollwerte ...)
- Hinweise zur Programmhandhabung

Grundnährstoffversorgung sächsischer Ackerflächen

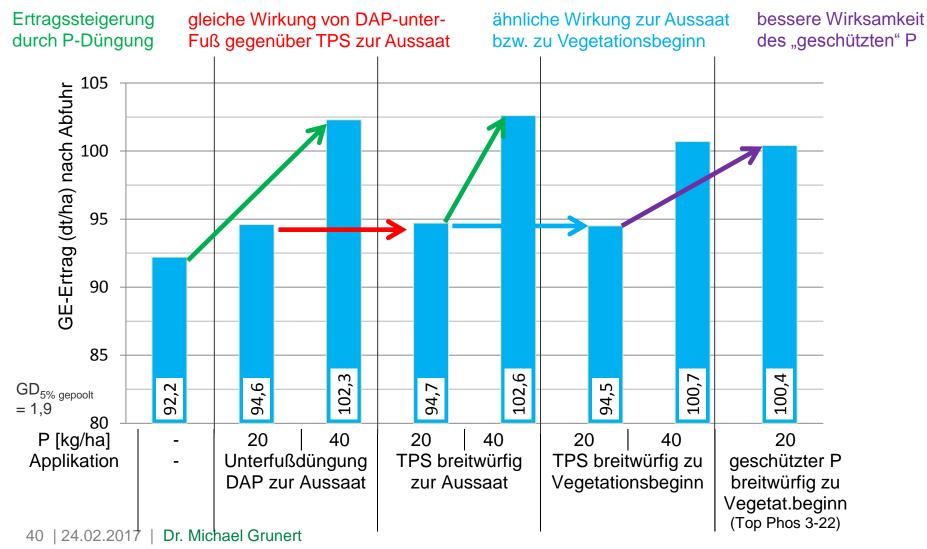
(Ø 2012-2014, 3.756 Flächen mit 32.301 ha)

	Flächenanteile (%) und Trend in Gehalts- u. pH-Klassen				
Gehalts- klasse	A sehr niedrig	B niedrig	C optimal	D hoch	E sehr hoch
Р	10,9 ↗	39,9 🗷	27,5 ↘	14,5 🖫	7,2 →
K	4,1 →	28,1 ↑	34,4 🖊	24,5 ↓	8,9 ↓
Mg	1,1 →	6,3 🖒	10,5 🖫	20,9 🖫	61,2 ↑
рН	1,9 🔽	27,2 🖫	54,3 🗷	12,9 🗷	3,7 ↗

Trend: \(\sinkend

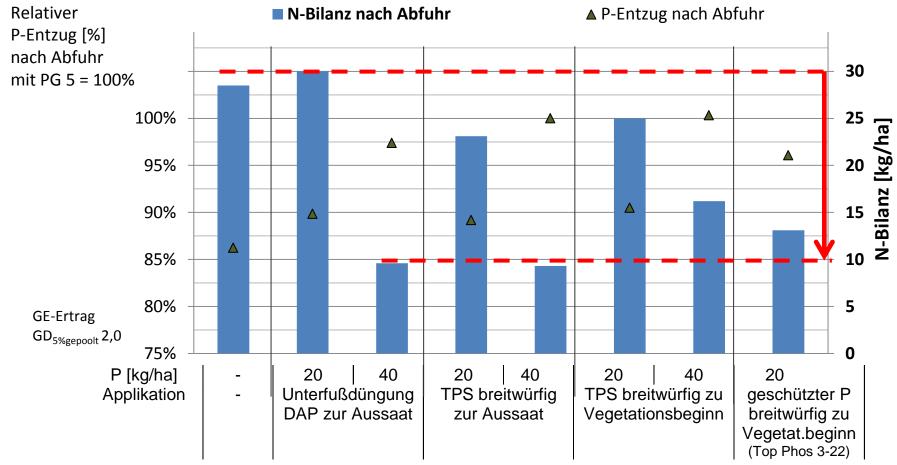
→ gleichbleibend

↑ stark steigend



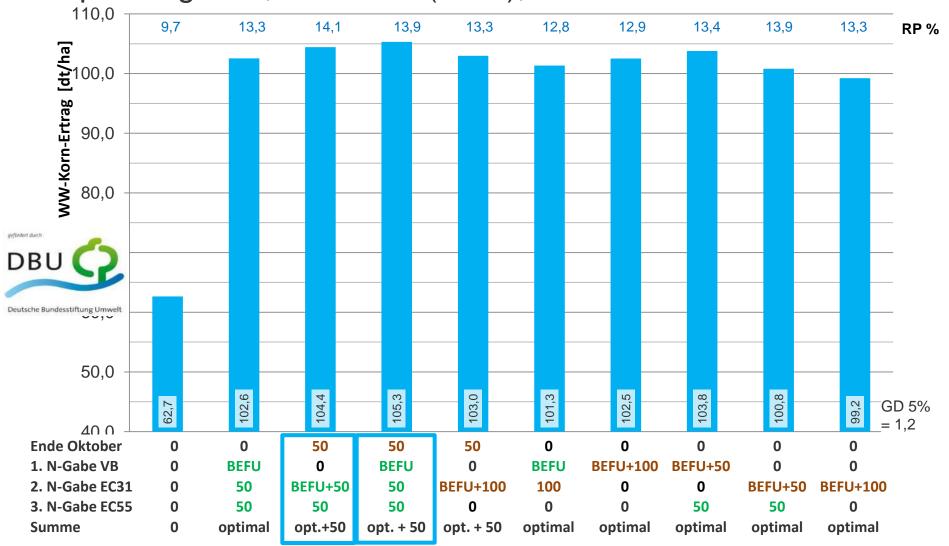
Ertragswirkung von P-Düngung auf P-unterversorgtem Boden

Forchheim, P_{CAL}bei Anlage: 2,6 mg/100 g Boden (B⁻)


Ø 2011-16 Fruchtfolge: SoGerste-WRaps-WWeizen-WGerste-WWeizen

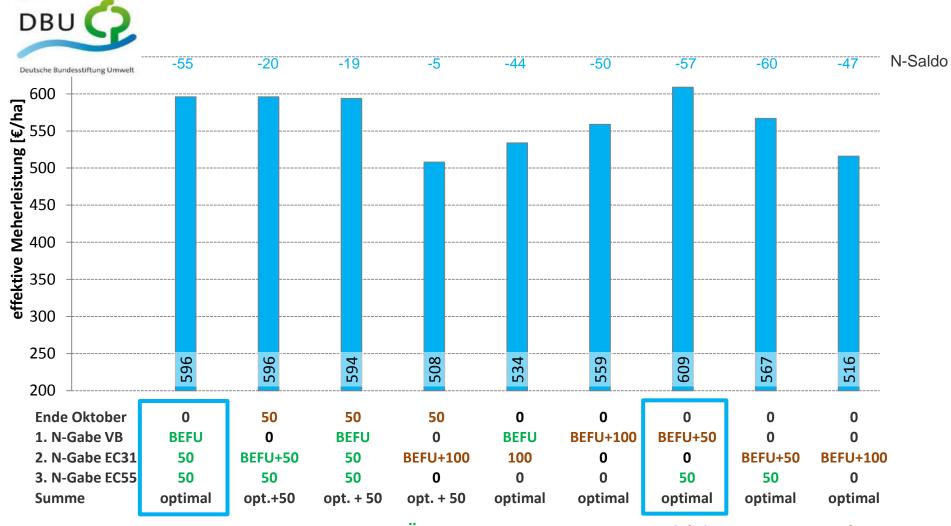
Wirkung differenzierter P-Düngung Landesamt für umwelt LANDWIRTSCHAFT auf N-Bilanz (und P-Entzug) **UND GEOLOGIE**

Forchheim, V, sL, P_{CAL} vor Anlage: 2,6 mg/100g Boden (B⁻), Direktsaat, Fruchtfolge: SoGerste - WRaps - WWeizen - WGerste - WWeizen Ø 2011-15


=> Verbesserung der N-Bilanz um ca. 20 kg N/ha nur durch P-Düngung

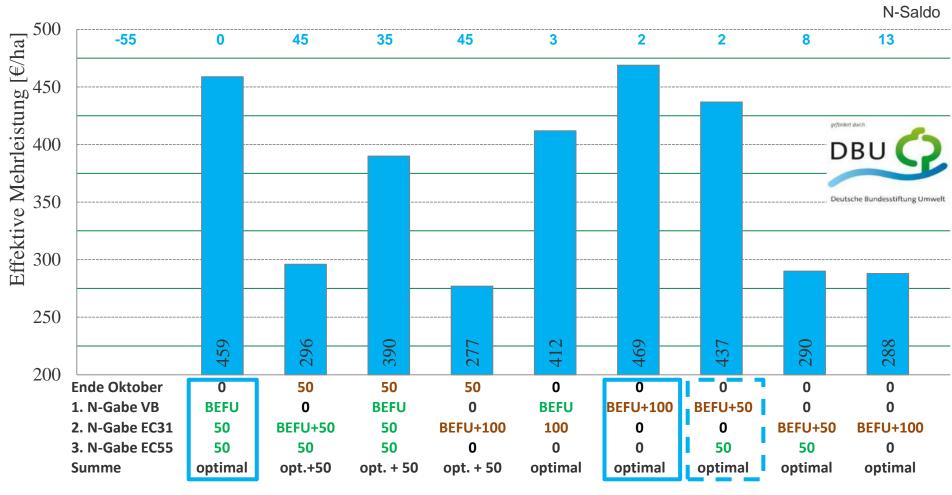
Injektionsdüngung Winterweizen Wirkung auf Kornertrag und Rohnroteingehalt Pommritz (Löden)

LANDESAMT FÜR UMWELT LANDWIRTSCHAFT UND GEOLOGIE


Rohproteingehalt, Pommritz (Lö4c), 2010-2015

Injektionsdüngung Winterweizen effektive Mehrleistung (€/ha) gegenüber 0 kg N/ha. Pommritz

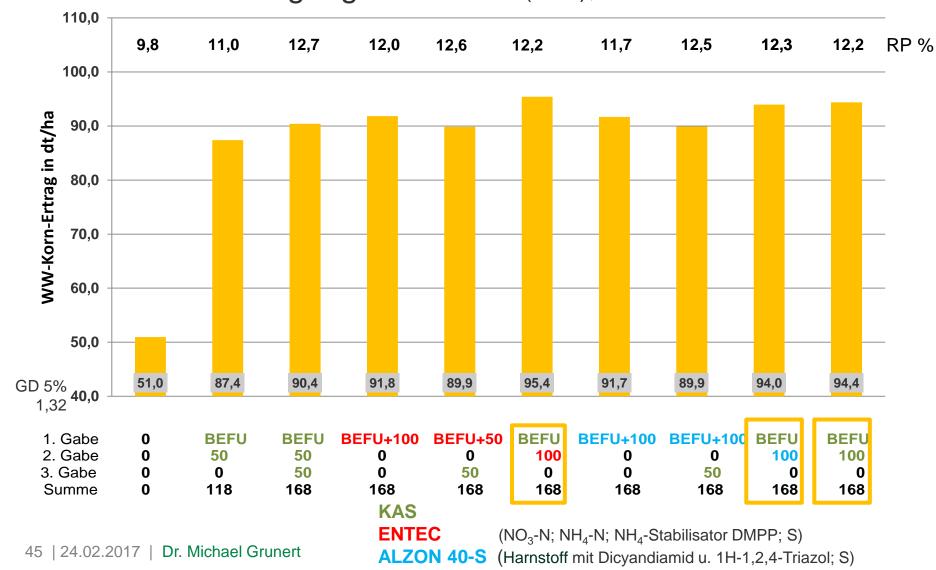
gegenüber 0 kg N/ha, Pommritz (Lö4c), 2010-2015


GRÜN = KAS streuen

BRAUN = Injektion Domamon L26 bzw. ASL

Injektionsdüngung Wintergerste effektive Mehrleistung (€/ha) gegenüber 0 kg N/ha. Baruth. D

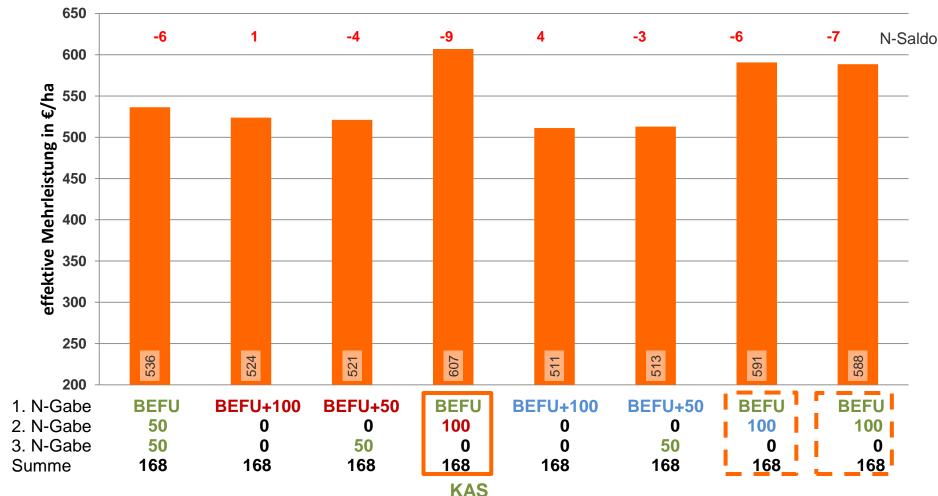
gegenüber 0 kg N/ha, Baruth, D3, Mittelwert 2010-2015


GRÜN = KAS streuen

BRAUN = Injektion Domamon L26 bzw. ASL

Ertrag und Rohproteingehalt von Winterweizen bei stabilisierter N-Düngung Fo

Forchheim (V8a), Ø 2012-2015



Wirtschaftlichkeit und N-Bilanz der stabilisierter N-Düngung

zu Winterweizen, Forchheim (V8a), Ø 2012-2015

ENTEC

(NO₃-N; NH₄-N; NH₄-Stabilisator DMPP; S)

ALZON 40-S (Harnstoff mit Dicyandiamid u. 1H-1,2,4-Triazol; S)

Ziele der Düngung

- bedarfsgerechte Pflanzenernährung optimale Nährstoffbereitstellung in:
 Menge, Zeitpunkt, Verfügbarkeit, Ausgewogenheit
- hohe Nährstoffeffizienz (Boden und Pflanze)
- Kosteneffizienz
- Verlustminderung
 Minimierung schädlicher Auswirkungen auf die Umwelt
- Erhalt und Verbesserung Bodenfruchtbarkeit

Vielen Dank für Ihre Aufmerksamkeit!

Ich wünsche Ihnen viel Erfolg und Freude bei der Arbeit in Ihren Betrieben!

Feldtage: Baruth 23.05. Pommritz 08.06. Salbitz 13.06. Öko Köllitsch 14.06., Nossen: PS+Düngung 16.06., Sorten 20.06. Christgrün 27.06. Forchheim 29.06.

Dr. Michael Grunert (035242) 631-7201 michael.grunert@smul.sachsen.de