

Bedeutung einer optimalen Strohverteilung für konservierende Bewirtschaftungsverfahren

Dr. Walter Schmidt

Sächsische Landesanstalt für Landwirtschaft

Gliederung

- 1 Vorteilswirkungen konservierender Bodenbearbeitung mit Mulchsaat
- 2 Probleme bei der Mulchsaat ohne Strohberäumung
- 3 Strohmanagement bei Mulchsaat ohne Strohberäumung
- 4 Getreide-Hochschnitt zur Optimierung der Strohverteilung
- 5 Hinweise zum Programmablauf

Vorteilswirkungen dauerhaft pflugloser bzw. konservierender Bodenbearbeitung mit Mulchsaat

- Minderung bzw. Verhinderung der Wasser- und Winderosion auf Ackerflächen
- Minderung der unproduktiven Wasserverdunstung
- ökonomische Vorteile durch weniger Arbeitsgänge

Probleme bei Mulchsaat ohne Strohberäumung

Probleme bei Mulchsaat ohne Strohberäumung

- Bewältigung großer Strohmengen
- Ungleiche Strohverteilung beim Mähdrusch (-> Haufenbildung)
- Zusammenziehen von zu langem Stroh bei nachfolgender Stoppel- und Grundbodenbearbeitung
- Störung der Saatgutablage durch Strohauflagen
- Störung der Keimwasserversorgung durch konzentriertes Stroh im Ablagebereich des Saatgutes
- Schwächung des Keimlings durch dicke Strohauflagen

Ungleiche Feldaufgänge und -feldbestände in den Folgejahren

- Mulchsaatverfahren - Strohmanagement erfolgsentscheidend!

Mulchsaat zu Raps

Strohmanagement bei konservierender Bodenbearbeitung

- 1. Strohbergung (vorrangig auf Raps-Mulchsaatflächen!).
- 2. Bei Belassen von Stroh auf der Ackerfläche:
- Reduktion der Strohmengen durch Anbau von kurzstrohigen Getreidesorten,
- Vermeidung von Lagergetreide,
- Zeitgewinn für Strohrotte durch möglichst frühe Ernte der Getreidevorfrucht (-> gezielte Sortenwahl, angemessene Anbauintensität (N-Düngung, Fungizidmaßnahmen) usw.),
- <u>Mähdrusch</u>: möglichst kurzes Häckseln (< 3 cm) und Aufspleißen des Strohs (Einarbeitung ↑, Rotteförderung ↑) sowie gleichmäßige Strohverteilung auf die gesamte Schnittbreite.

Strohmanagement bei konservierender Bodenbearbeitung

Getreidehochschnitt zur Optimierung der Strohverteilung

- 1. Schritt: Hochschnitt
- -> sehr gute Strohverteilung
- 2. Schritt: Mulchen von stehendem Stroh
- -> kurzes, gleichmäßig verteiltes Häckselgut

Vorteile des "Ährenschnitts" beim Mähdrusch (Stemann, 2004)

	•	
Ersparnis Kraftstoff	9 – 12 l/ha	5 – 8 € /ha
Höhere Flächenleistung	+ 25 – 40 %	20 – 50 € /ha
Geringerer Verschleiß der Häckslermesser		1 - 2 € /ha
Mehrertrag durch geringere Schüttler-verluste	0,5 – 1 0 dt/ha	5 – 10 €/ha
Summe		~ 30 – 70 €/ha

Kosten des Nachhäckselns mit Mulcher nach "Ährenschnitt" beim Mähdrusch (Stemann, 2004)

	Kosten [€/h]	Kosten [€/ha]
Schlepper	15	4 - 6
Kraftstoff	6	1,7 – 2,5
Fahrer	15	4 - 6
Häcksler*		13
Summe		~ 23 - 28

^{*} Neupreis bei 3 m Breite: ca. 6.600 €, 20% jährl. Kosten, 100 ha Einsatzfläche

Vorteile des Nachhäckselns mit Mulcher nach "Ährenschnitt" beim Mähdrusch (Stemann, 2004)

- Ersparnis an Trocknungskosten aufgrund optimaler Erntetermine,
- geringerer Verschleiß am Mähdrescher (MD),
- höhere Kampagneleistung / größere Schnittbreite / geringere MD-Kapazität erforderlich,
- bestmögliche Strohverteilung bei feinster Strohzerkleinerung,
- beschleunigte Strohrotte verringerter Krankheitsdruck,
- Einsparung von Arbeitsgängen bei nachfolgender Bodenbearbeitung,
- störungsfreiere Mulchsaat: besserer Feldaufgang, gleichmäßigere Bestände,
- Direktsaat ist eher möglich.

Strohmanagement auf gepflügten Flächen

Weitere Schritte nach Drusch der Vorfrucht bei Mulchsaat ohne Strohberäumung

- Stoppelbearbeitung <u>sofort</u>
 nach der Getreideernte
 (Striegel, Flachgrubber,
 Scheibenegge usw.) mit
 Walzengang (bei Trockenheit),
- Optional: 1 bis 2 x
 Grubberbearbeitung (~ 10 15 cm tief) zur Reduktion der
 Strohauflage und zur
 Rotteförderung,
- Mulchsaat (mit Anwalzen)

Strohbedeckungsgrad in Abhängigkeit der Bodenbearbeitung

Boden- bearbeitungsgerät	Bearbeitungstiefe [cm]	Strohbedeckungs- grad [%]
Schwerstriegel	1	100
Scheibenegge	10	55
Flachgrubber	10	48
Schwergrubber	15	32
Pflug	30	0

Bodengefügeschutz beim Mähdrusch

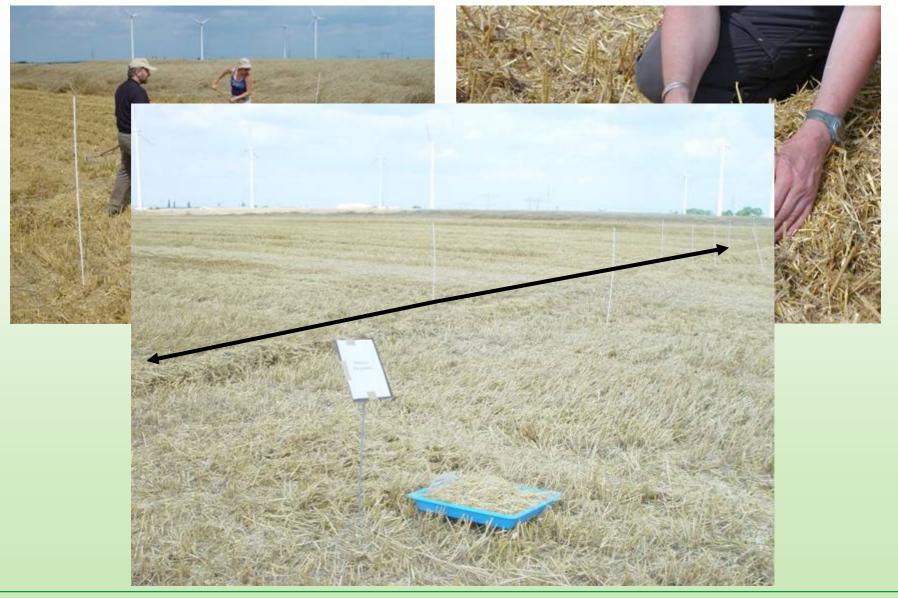
Zwillingsbereifung bzw. Laufband beim Mähdrescher

Bodengefügeschutz beim Mähdrusch

Einsatz eines Überladewagen zum Abtransport des Erntegutes

Weiterer Programmablauf

Vorführung nachstehender Mähdrescher (AB: Arbeitsbreite):


- 1. Claas Lexion 570 (AB 7,50 m)
- 2. John Deere 9780i CTS (AB 7,60 m)
- 3. Massey Ferguson MF CEREA 7278 AL (AB 6,75 m)
- 4. Case New Holland CX 880 (AB 7,50 m)
- 5. Same Deutz-Fahr 5690 HTS (AB 6,30 m)
- 6. Sampo Rosenlew 3085 TS L (AB 5,10 m)
- Demonstration von Getreide-Hochschnitt und nachfolgendem Mulchereinsatz

Ermittlung der Strohquerverteilung und Häcksellänge

