
# Neue Richtwerte zur Phosphordüngung bei Poinsettien und anderen Kulturen





### Arbeitsgruppe "Phosphor im Zierpflanzenbau"

| Dr. Susanne Amberger-Ochsenbauer | HS Weihenstephan-Triesdorf            |
|----------------------------------|---------------------------------------|
| Barbara Degen                    | LVG Heidelberg                        |
| Michael Emmel                    | LVG Hannover-Ahlem                    |
| Rudolf Feldmann                  | SfG Stuttgart-Hohenheim               |
| Robert Koch                      | LVG Heidelberg                        |
| Prof. Dr. Elke Meinken           | HS Weihenstephan-Triesdorf            |
| Dr. Heinz-Dieter Molitor         | HS Geisenheim                         |
| Prof. Dr. Eva Rietze             | HTW Dresden                           |
| Stephan Wartenberg               | LfULG Abt. Gartenbau Dresden-Pillnitz |
| Dr. Elke Ueber                   | LVG Bad Zwischenahn                   |



#### weltweit verstärkte Nachfrage

zum Teil hohe Gehalte an Schwermetallen wie Cadmium und Uran in Rohphosphaten

Börsenspekulationen

wachsende
Aufwendungen für
Abbau und
Aufbereitung
Steigende
Phosphatpreise am
Weltmarkt

#### Gründe, jetzt umzudenken

steigende Kosten für Dünger und Kultursubstrate

Eintrag von Phosphat in Gewässer ist Umweltproblem, auch wenn Zierpflanzen kaum beteiligt Zierpflanzenprodukte landen schließlich in der kommunalen oder privaten Kompostierung Phosphor gilt als endlicher Rohstoff

Komposte weisen hohe Phosphatgehalte auf, werden aber eher entsorgt denn als Rohstoff eingesetzt

Qualitätsprobleme mit zu hohem Phosphorangebot in Verbindung gebracht



Traditionell hohe Grund- und Nachdüngung mit Phosphor über den Bedarf hinaus

In der Pflanzensubstanz N :  $P_2O_5$  bei 1 : 0,2 bis 0,3 in heutigen Mehrnährstoffdüngern bei 1 : 0,7 bis 1: 0,3

#### Spielräume, neu zu handeln

Mehr Sicherheit für die Phosphorverfügbarkeit durch moderne Kultursysteme (z. B. pH-Aussteuerung oder Bewässerungsdüngung)

Steigende Kosten für mineralische Phosphordünger verbessern Chancen für "Kreislaufquellen"



### Phosphor ist und bleibt Hauptnährstoff

Phosphor darf zu keinem
Zeitpunkt der
Pflanzenentwicklung zum
begrenzenden Faktor werden

Wirtschaftlichkeit und einfache Handhabbarkeit der Phosphorversorgung ist zu sichern

#### Grenzen, den Phosphor zu reduzieren

Zum Vermarktungszeitpunkt muss die Phosphorreserve im Produkt so groß sein, dass eine normale Entwicklung beim Verbraucher gesichert ist

Sicherheit der Phosphorversorgung auch bei zu erwartenden Störungen (pH-Wert, Wasserqualität, Kalk- und Tonzuschläge, Wechselwirkungen mit anderen Düngern usw.)

## Allgemeine Überlegung zur bedarfsgerechten Düngung:

N : P<sub>2</sub>O<sub>5</sub> in der Trockensubstanz

- Stickstoff durchschnittlich 3 bis 4 % N in der TS
- Phosphor optimal bei 0,25 bis 35 % P in der TS = 0,57 bis 0,80 %  $P_2O_5$
- das heißt:

N: P<sub>2</sub>O<sub>5</sub> zwischen 1: 0,14 und 0,27

Detaillierte Angaben der N- und P-Gehalte in der TS zu verschiedenen Zierpflanzen in : BARKER, A. V. and PILBEAM, D. J: Handbook of Plant Nutrition. CRC Press 2008

#### Poinsettien

| Quelle                                 | N : P <sub>2</sub> O <sub>5</sub> | P <sub>2</sub> O <sub>5</sub><br>in mg/ I NL | Grunddüngung<br>in mg P₂O₅/I<br>Substrat                | P <sub>2</sub> O <sub>5</sub> je Pflanze<br>in mg |
|----------------------------------------|-----------------------------------|----------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| Grantzau 1996                          | 1 : 0,10                          |                                              | 200 (Torf-Ton-Mischungen)<br>50 bis 100 (Torfsubstrate) |                                                   |
| Straver, de Kreij und<br>Verberkt 1999 | 1 : 0,35                          |                                              |                                                         |                                                   |
| Grantzau und<br>Emmel 2004             |                                   | 20                                           | 30 bis 186                                              |                                                   |
| Molitor und Fischer<br>2014            | 1:0,15 bis 0,25                   |                                              | 85                                                      |                                                   |
| Molitor und Fischer<br>2015            |                                   | 50<br>25                                     | 50<br>100                                               |                                                   |
| Wartenberg 2014                        | 1:0,20                            |                                              |                                                         | 140                                               |
| Wartenberg 2015                        | 1:0,20                            |                                              |                                                         | 140                                               |

#### Arbeitsgruppe Phosphor im Zierpflanzenbau Versuchsergebnisse Poinsettien







'Cosmo Red': 0 mg P20s/l Nährlösung



'Cosmo Red': 7,5 mg P<sub>2</sub>O<sub>5</sub>/I Nährlösung



'Cosmo Red': 15 mg P2 O5/I Nährlösung



'Cosmo Red': 30 mg P2 O5/I Nährlösung



'Cosmo Red': 60 mg P2Os/I Nährlösung



'Cosmo Red': 120 mg P205/I Nährlösung

#### Fazit des Versuchs

Bei Topf-Poinsettien der Sorten 'Infinity Polar' und 'Cosmo Red' hat sich ein Phosphorangebot über die Bewässerungsdüngung von 15 bis 30 mg P<sub>2</sub>O<sub>5</sub>/l als ausreichend erwiesen. Höhere Phosphatkonzentrationen bis 120 mg P<sub>2</sub>O<sub>5</sub>/l wirkten sich nicht signifikant auf das Wachstum der Pflanzen oder die Qualität der Brakteen aus

Substrat (Poinsettiensubstrat Patzer) enthielt zum Topftermin 85 mg P<sub>2</sub>O<sub>5</sub> (CAT) pro Liter. Basierend auf diesen Ergebnissen errechnet sich ein optimales N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O-Verhältnis beim Nährstoffangebot von 15+3+12.

### Düngung von Poinsettien – wie viel Phosphor muss sein?

Die Bemessung der Phosphordüngung wird im Zierpflanzenbau, wie auch in anderen Sparten, relativ großzügig gehandhabt. Verantwortlich dafür ist die vermeintlich geringe Gefahr von Pflanzenschäden bei Überangebot. Ein Versuch in Geisenheim befasste sich mit dem Phosphorbedarf von Poinsettien.

MOLITOR, HEINZ-DIETER; FISCHER, MANFRED: Düngung von Poinsettien – wie viel Phosphor muss sein? in Gärtnerbörse 8/2014, S. 50-52

### Arbeitsgruppe Phosphor im Zierpflanzenbau Versuchsergebnisse **Poinsettien**

### LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE Freistaat SACHSEN



















MOLITOR, HEINZ-DIETER; FISCHER, MANFRED: Düngung von Poinsettien – Weniger Phosphor ist möglich. In Gärtnerbörse 11/2015, S. 45-49

#### Fazit des Versuchs

Bei Topf-Poinsettien der Sorten 'Premium Early' und 'Euro Glory Red' hat
sich das variierte Phosphorangebot
bei der Grund- und Bewässerungsdüngung deutlich auf das Pflanzenwachstum und besonders auf die
Brakteenentwicklung ausgewirkt.
Demnach sollte das Substrat zum
Topftermin mit mindestens 50, besser
100 mg CAT-löslichem P<sub>2</sub>O<sub>5</sub> pro Liter
Substrat bevorratet sein, wenn rechtzeitig nach dem Topfen mit der Nachdüngung begonnen wird.

Es bestätigten sich die bereits in Vorversuchen gemachten Erfahrungen, dass bei der regelmäßigen Nachdüngung Phosphorkonzentrationen von 25 bis 50 mg P<sub>2</sub>O<sub>5</sub> pro Liter Nährlösung, abhängig von der Wuchsstärke der jeweiligen Sorte, völlig ausreichen. Ein Indiz dafür ist auch die bereits bei 50 mg P<sub>2</sub>O<sub>5</sub> pro Liter Nährlösung festzustellende Anreicherung von Phosphor im Substrat bis Kulturende.

### Arbeitsgruppe Phosphor im Zierpflanzenbau Versuchsergebnisse **Poinsettien**

Moderne Düngungsstrategien bei Poinsettien orientieren sich am Nährstoffbedarf je Einzelpflanze. Für Stickstoff ist es beispielsweise praxisüblich, die Grund- und Nachdüngung so zu bemessen, dass einer Standardpflanze mit drei bis fünf Brakteen im 12er-Topf im Laufe der Kultur etwa 700 mg Stickstoff je Pflanze zugeführt werden.



Abbildungen: LfULG Dresden-Pillnitz 201

Abbildung 3: Einfluss der Versuchsvarianten auf den Gesamteindruck
(Boniturnoten von 1 = sehr schlecht

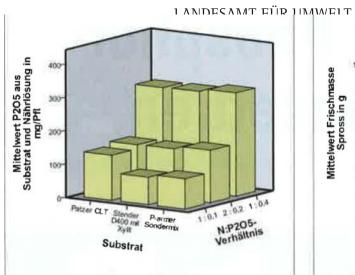



Abbildung 1: Reale mengenbilanzierte Phosphorzufuhr in den Versuchsvarianten zur Phosphorernährung bei Poinsettien

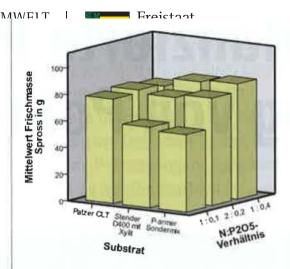



Abbildung 2: Einfluss der Versuchsvarianten auf die Frischmasse des Sprosses von Poinsettien

Wie der Stickstoff kann auch der Phosphor mengenbilanziert verabreicht werden. Für Poinsettien in Standardgröße sind beispielsweise neben 700 mg N etwa 140 mg P<sub>2</sub>O<sub>5</sub> je Pflanze ausreichend. Die Zufuhr kann auch allein aus der Grunddüngung stammen. Allerdings sollten zum Kulturende noch etwa 50 mg P<sub>2</sub>O<sub>5</sub> je nbe Liter Substrat vorhanden sein.

#### Mengenbilanzierte Phosphordüngung von Poinsettien

WARTENBERG, STEPHAN: in Gärtnerbörse 5/2015, S. 51-53



#### P-Startdüngung bei Poinsettien

Substrat Patzer Cocoperl mit 2 g 14-16-16 /l und 10 % Feuchtton Ausbringung Startdünger: unmittelbar nach dem Topfen, Gießbehandlung 0,2 %, 50 ml/Topf









FELDMANN, RUDOLF: P-Startdüngung bei Poinsettien. In Gärtnerbörse 5/2015, S. 46-50

#### Faktor A: (2 Dünger)

| 1 | Peters Prof. Plantstarter (10-52-10) |
|---|--------------------------------------|
| 2 | Kontrolle                            |

#### Faktor B: (2 versch. Nachdüngungen)

| 1 | P. Excel (15-5-15)         |
|---|----------------------------|
| 2 | Fertiplant Acid (15-10-15) |

#### Faktor C: (2 Sorten)

#### Herkunft:

| 1 | 'Prima Donna' | Dümmen  |
|---|---------------|---------|
| 2 | 'Happy Day'   | Selecta |

#### Fazit der Versuche

Fasst man die Ergebnisse beider
Versuche zusammen, lässt sich feststellen, dass bei Verwendung eines
aufgedüngten Substrates mit Tonanteil auch bei niedrigen Temperaturen
nur schwach wachsende Poinsettien
positiv auf eine Behandlung mit einem
P-Startdünger reagieren. Dies ist aber
auch nur dann der Fall, wenn die
Nachdüngung mit einem Dünger erfolgt, der nur wenig Phosphor enthält.
Wird dagegen ein Dünger mit höherem Phosphorgehalt eingesetzt,
ergeben sich keine Unterschiede.



## Optimierung der Grund- und Nachdüngung von Phosphor bei Poinsettien (LfULG Dresden-Pillnitz 2015)

| A Subs | trat                                    |          | pflanzenverfügbar                        |                                       |
|--------|-----------------------------------------|----------|------------------------------------------|---------------------------------------|
| A1     | 10 mg P <sub>2</sub> O <sub>5</sub> /l  |          | 7 mg P <sub>2</sub> O <sub>5</sub> /Pfl  |                                       |
| A2     | 50 mg P <sub>2</sub> O <sub>5</sub> /l  |          | 35 mg P <sub>2</sub> O <sub>5</sub> /Pfl |                                       |
| A3     | 150 mg P <sub>2</sub> O <sub>5</sub> /l |          | 70 mg P <sub>2</sub> O <sub>5</sub> /Pfl |                                       |
|        |                                         |          |                                          |                                       |
| B N:P- | Verhältnis bei 700 r                    | ng N/Pfl |                                          | mg P <sub>2</sub> O <sub>5</sub> /Pfl |
| B1     | 1:0,1                                   | 70       |                                          | 70                                    |
| B2     | 1:0,2                                   | 140      |                                          | 140                                   |
| B3     | 1:0,4                                   | 280      |                                          | 280                                   |
|        |                                         |          |                                          |                                       |

C Sorten: Premium Polar, Prima Donna, Christmas Feelings NPCW02044, White Christmas, Alreddy Red, Saturnus Marble



| Gesamt mg P <sub>2</sub> O <sub>5</sub> je Pfl        | 70     | 140    | 280     |
|-------------------------------------------------------|--------|--------|---------|
| Gesamt N : P <sub>2</sub> O <sub>5</sub>              | 1:0,1  | 1:0,2  | 1:0,4   |
|                                                       |        |        |         |
| Grunddüngung 7 mg P <sub>2</sub> O <sub>5</sub> /Pfl  |        |        |         |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 63     | 133    | 273     |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         | 1:0,09 | 1:0,19 | 1: 0,39 |
|                                                       |        |        |         |
| Grunddüngung 35 mg P <sub>2</sub> O <sub>5</sub> /Pfl |        |        |         |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 35     | 105    | 245     |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         | 1:0,05 | 1:0,15 | 1:0,35  |
|                                                       |        |        |         |
| Grunddüngung 70 mg P <sub>2</sub> O <sub>5</sub> /Pfl |        |        |         |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 0      | 70     | 210     |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         | 1:0,00 | 1:0,01 | 1:0,30  |



| Gesamt mg P <sub>2</sub> O <sub>5</sub> je Pfl        | 70     | 140    | 280     |
|-------------------------------------------------------|--------|--------|---------|
| Gesamt N : P <sub>2</sub> O <sub>5</sub>              | 1:0,1  | 1:0,2  | 1:0,4   |
|                                                       |        |        |         |
| Grunddüngung 7 mg P <sub>2</sub> O <sub>5</sub> /Pfl  |        |        |         |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 63     | 133    | 273     |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         | 1:0,09 | 1:0,19 | 1: 0,39 |
|                                                       |        |        |         |
| Grunddüngung 35 mg P <sub>2</sub> O <sub>5</sub> /Pfl |        |        |         |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 35     | 105    | 245     |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         | 1:0,05 | 1:0,15 | 1:0,35  |
|                                                       |        |        |         |
| Grunddüngung 70 mg P <sub>2</sub> O <sub>5</sub> /Pfl |        |        |         |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 0      | 70     | 210     |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         | 1:0,00 | 1:0,01 | 1:0,30  |



| Gesamt mg P <sub>2</sub> O <sub>5</sub> je Pfl | 70    | 140   | 280   |
|------------------------------------------------|-------|-------|-------|
| Gesamt N : P <sub>2</sub> O <sub>5</sub>       | 1:0,1 | 1:0,2 | 1:0,4 |

Grunddüngung 7 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N : P<sub>2</sub>O<sub>5</sub>

Grunddüngung 35 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N : P<sub>2</sub>O<sub>5</sub>

Grunddüngung 70 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N: P<sub>2</sub>O<sub>5</sub>





| Gesamt mg P <sub>2</sub> O <sub>5</sub> je PfI        | 70    | 140         | 280              |
|-------------------------------------------------------|-------|-------------|------------------|
| Gesamt N : P <sub>2</sub> O <sub>5</sub>              | 1:0,1 | 1:0,2       | 1:0,4            |
|                                                       |       |             |                  |
| Grunddüngung 7 mg P <sub>2</sub> O <sub>5</sub> /Pfl  | Sp    | rossmasse i | n g              |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 25    | 74          | 87               |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |       |             |                  |
|                                                       |       |             |                  |
| Grunddüngung 35 mg P <sub>2</sub> O <sub>5</sub> /Pfl |       |             |                  |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 56    | 80          | 92               |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |       |             |                  |
|                                                       |       |             |                  |
| Grunddüngung 70 mg P <sub>2</sub> O <sub>5</sub> /Pfl |       |             |                  |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 56    | 80          | 94               |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |       |             |                  |
| 16   14. November 2017   Stephan Wartenberg           |       | Mittelwert  | e aller 6 Sorten |



| Gesamt mg P <sub>2</sub> O <sub>5</sub> je Pfl | 70    | 140   | 280   |
|------------------------------------------------|-------|-------|-------|
| Gesamt N: P <sub>2</sub> O <sub>5</sub>        | 1:0,1 | 1:0,2 | 1:0,4 |

Grunddüngung 7 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N: P<sub>2</sub>O<sub>5</sub>

Grunddüngung 35 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N : P<sub>2</sub>O<sub>5</sub>

Grunddüngung 70 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N : P<sub>2</sub>O<sub>5</sub>





| Gesamt mg P <sub>2</sub> O <sub>5</sub> je Pfl                                            | 70    | 140            | 280              |
|-------------------------------------------------------------------------------------------|-------|----------------|------------------|
| Gesamt N : P <sub>2</sub> O <sub>5</sub>                                                  | 1:0,1 | 1:0,2          | 1:0,4            |
| Grunddüngung 7 mg P <sub>2</sub> O <sub>5</sub> /Pfl                                      | Ti    | riebe je Pflan | ze               |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl                                         | 3,2   | 4,5            | 4,6              |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>                                             |       |                |                  |
|                                                                                           |       |                |                  |
| Grunddüngung 35 mg P <sub>2</sub> O <sub>5</sub> /Pfl                                     |       |                |                  |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl                                         | 4,4   | 4,5            | 4,8              |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>                                             |       |                |                  |
|                                                                                           |       |                |                  |
| Grunddüngung 70 mg P <sub>2</sub> O <sub>5</sub> /Pfl                                     |       |                |                  |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl                                         | 4,6   | 4,8            | 4,9              |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub> 18   14. November 2017   Stephan Wartenberg |       | Mittelwert     | e aller 6 Sorten |



| Gesamt mg P <sub>2</sub> O <sub>5</sub> je PfI | 70    | 140   | 280   |
|------------------------------------------------|-------|-------|-------|
| Gesamt N : P <sub>2</sub> O <sub>5</sub>       | 1:0,1 | 1:0,2 | 1:0,4 |

Grunddüngung 7 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N : P<sub>2</sub>O<sub>5</sub>

Grunddüngung 35 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N : P<sub>2</sub>O<sub>5</sub>

Grunddüngung 70 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N: P<sub>2</sub>O<sub>5</sub>





| Gesamt mg P <sub>2</sub> O <sub>5</sub> je PfI        | 70              | 140                      | 280                     |
|-------------------------------------------------------|-----------------|--------------------------|-------------------------|
| Gesamt N : P <sub>2</sub> O <sub>5</sub>              | 1:0,1           | 1:0,2                    | 1:0,4                   |
|                                                       |                 |                          |                         |
| Grunddüngung 7 mg P <sub>2</sub> O <sub>5</sub> /Pfl  | G               | esamteindru              | CK                      |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 3,8             | 7,1                      | 7,0                     |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |                 |                          |                         |
|                                                       |                 |                          |                         |
| Grunddüngung 35 mg P <sub>2</sub> O <sub>5</sub> /Pfl |                 |                          |                         |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 5,8             | 7,2                      | 7,4                     |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |                 |                          |                         |
|                                                       |                 |                          |                         |
| Grunddüngung 70 mg P <sub>2</sub> O <sub>5</sub> /Pfl |                 |                          |                         |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 5,6             | 6,8                      | 7,4                     |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         | 1 = sehr schlec | ht bis 9 = sehr gut, Mit | telwerte aller 6 Sorten |

1 = sehr schlecht bis 9 = sehr gut, Mittelwerte aller 6 Sorten



| Gesamt mg P <sub>2</sub> O <sub>5</sub> je Pfl | 70    | 140   | 280   |
|------------------------------------------------|-------|-------|-------|
| Gesamt N: P <sub>2</sub> O <sub>5</sub>        | 1:0,1 | 1:0,2 | 1:0,4 |

Grunddüngung 7 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N : P<sub>2</sub>O<sub>5</sub>

Grunddüngung 35 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N : P<sub>2</sub>O<sub>5</sub>

Grunddüngung 70 mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung mg P<sub>2</sub>O<sub>5</sub>/Pfl

Nachdüngung N: P<sub>2</sub>O<sub>5</sub>





| Gesamt mg P <sub>2</sub> O <sub>5</sub> je Pfl        | 70       | 140                                     | 280      |
|-------------------------------------------------------|----------|-----------------------------------------|----------|
| Gesamt N : P <sub>2</sub> O <sub>5</sub>              | 1:0,1    | 1:0,2                                   | 1:0,4    |
|                                                       | 14 1     |                                         |          |
| Grunddüngung 7 mg P <sub>2</sub> O <sub>5</sub> /Pfl  | Kulturen | ide mg P <sub>2</sub> O <sub>5</sub> /l | Substrat |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 14       | 24                                      | 71       |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |          |                                         |          |
|                                                       |          |                                         |          |
| Grunddüngung 35 mg P <sub>2</sub> O <sub>5</sub> /Pfl |          |                                         |          |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 22       | 37                                      | 79       |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |          |                                         |          |
|                                                       |          |                                         |          |
| Grunddüngung 70 mg P <sub>2</sub> O <sub>5</sub> /Pfl |          |                                         |          |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | 52       | 78                                      | 114      |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |          |                                         |          |
| 22   14. November 2017   Stephan Wartenberg           |          |                                         |          |



| Gesamt mg P <sub>2</sub> O <sub>5</sub> je PfI        | 70         | 140                   | 280        |
|-------------------------------------------------------|------------|-----------------------|------------|
| Gesamt N : P <sub>2</sub> O <sub>5</sub>              | 1:0,1      | 1:0,2                 | 1:0,4      |
|                                                       |            | Fuere for la la conse |            |
| Grunddüngung 7 mg P <sub>2</sub> O <sub>5</sub> /Pfl  |            | Empfehlung            |            |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     |            | + -                   | +Ü         |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |            |                       |            |
|                                                       |            |                       |            |
| Grunddüngung 35 mg P <sub>2</sub> O <sub>5</sub> /Pfl |            |                       |            |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | -          | ++                    | +Ü         |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         |            |                       |            |
|                                                       |            |                       |            |
| Grunddüngung 70 mg P <sub>2</sub> O <sub>5</sub> /PfI |            |                       |            |
| Nachdüngung mg P <sub>2</sub> O <sub>5</sub> /Pfl     | -          | ++                    | +Ü         |
| Nachdüngung N : P <sub>2</sub> O <sub>5</sub>         | Ü = Anreid | :herung => Ü          | berschuss! |



### Welche Richtwerte gebräuchlich?

- Grunddüngung (Start- und Vorratsdüngung, sofort pflanzenverfügbar)
- Langzeitdüngung
- Depotdüngung
- Nährlösungskonzentration für (kontinuierliche) Bewässerungsdüngung
- Konzentration für (diskontinuierliche) Flüssigdüngung
- Richtwerte zur Bewertung von Substratanalysen
- Stoffmengen für mengenbilanzierte Düngung



## Vorschlag für "allgemeine" Lösung: Anbindung an Stickstoffangebot

- Startdüngung mit 0,5 bis 1 g MND/I Substrat MND mit N :  $P_2O_5 = 1 : 0,6$  bis 1 : 1,2
- Nachdüngung Bewässerungsdüngung, diskontinuierliche Flüssigdüngung MND mit N :  $P_2O_5 = 1$  : 0,2 bis 0,3
- Langzeitdüngung, Depotdüngung
   mit N : P<sub>2</sub>O<sub>5</sub> von effektiv wirksam = 1 : 0,2 bis 0,3

#### Phosphor aus sofort pflanzenverfügbarer Grunddüngung

| PG Mix             | 0,5 g/l                                | 1,0 g/l                                 | 1,5 g/l                                 | 2 g/l                                   |
|--------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| 14:16:18+Mg+Mikro  | 80 mg P <sub>2</sub> O <sub>5</sub> /I | 160 mg P <sub>2</sub> O <sub>5</sub> /I | 240 mg P <sub>2</sub> O <sub>5</sub> /I | 320 mg P <sub>2</sub> O <sub>5</sub> /I |
| 12:14:24+Mg+Mikro  | $70 \text{ mg P}_2\text{O}_5/\text{I}$ | 140 mg P <sub>2</sub> O <sub>5</sub> /I | 210 mg $P_2O_5/I$                       | 280 mg P <sub>2</sub> O <sub>5</sub> /I |
| 15:10:20+Mg+Mikro  | 50 mg P <sub>2</sub> O <sub>5</sub> /I | 100 mg P <sub>2</sub> O <sub>5</sub> /I | 150 mg P <sub>2</sub> O <sub>5</sub> /I | 200 mg P <sub>2</sub> O <sub>5</sub> /I |
|                    |                                        |                                         |                                         |                                         |
| PG Mix Control*    |                                        |                                         | * 50 % N und                            | P langsam fließend                      |
| 15:10:20+Mg+Mikros | 50 mg P <sub>2</sub> O <sub>5</sub> /I | 100 mg P <sub>2</sub> O <sub>5</sub> /I | 150 mg P <sub>2</sub> O <sub>5</sub> /I | 200 mg P <sub>2</sub> O <sub>5</sub> /I |

#### Phosphor aus Vorratsdüngung

|                    | 0,5 g/l                                | 1,0 g/l                                 | 1,5 g/l                                 | 2 g/l                                   |
|--------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Gepac LZD 20-10-18 | 80 mg P <sub>2</sub> O <sub>5</sub> /I | 160 mg P <sub>2</sub> O <sub>5</sub> /I | 240 mg P <sub>2</sub> O <sub>5</sub> /I | 320 mg P <sub>2</sub> O <sub>5</sub> /I |

## Grunddüngung mit 70 bis 100 mg P<sub>2</sub>O<sub>5</sub>/I Substrat ausreichend! (bei P-Nachdüngung)



## Vorschlag für "allgemeine" Lösung: Anbindung an Stickstoffangebot

- Startdüngung mit 0,5 bis 1 g MND/I Substrat MND mit N :  $P_2O_5 = 1 : 0,6$  bis 1 : 1,2
- Nachdüngung Bewässerungsdüngung, diskontinuierliche Flüssigdüngung MND mit N :  $P_2O_5 = 1$  : 0,2 bis 0,3
- Langzeitdüngung, Depotdüngung
   mit N : P<sub>2</sub>O<sub>5</sub> von effektiv wirksam = 1 : 0,2 bis 0,3

#### Phosphor aus Nachdüngung

| P <sub>2</sub> O <sub>5</sub> -Gehalt im<br>MND | 0,2 g/l | 0,4 g/l | 0,5 g/l | 0,6 g/l | 0,8 g/l | 1 g/l | 2 g/l |
|-------------------------------------------------|---------|---------|---------|---------|---------|-------|-------|
| 5 %                                             | 10      | 20      | 25      | 30      | 40      | 50    | 100   |
| 8 %                                             | 16      | 32      | 40      | 48      | 64      | 80    | 160   |
| 10 %                                            | 20      | 40      | 50      | 60      | 80      | 100   | 200   |
| 12 %                                            | 24      | 48      | 60      | 72      | 96      | 120   | 240   |
| 16 %                                            | 32      | 64      | 80      | 96      | 128     | 160   | 320   |
| 18 %                                            | 36      | 72      | 90      | 108     | 144     | 180   | 360   |
| 20 %                                            | 58      | 116     | 145     | 174     | 232     | 290   | 580   |
| 30 %                                            | 60      | 120     | 150     | 180     | 240     | 300   | 600   |
| 52 %                                            | 104     | 208     | 260     | 312     | 416     | 520   | 1040  |

Mehrnährstoffdünger mit N :  $P_2O_5 = 1 : 0,20$  ausreichend, d.h. bei 15 % N nur 3 %  $P_2O_5$ !

#### Mehrnährstoffdünger mit relativ niedrigem P-Gehalt

| Firma                      | Dünger                       | N+P <sub>2</sub> O <sub>5</sub> +K <sub>2</sub> O | N:P <sub>2</sub> O <sub>5</sub> |
|----------------------------|------------------------------|---------------------------------------------------|---------------------------------|
| Planta                     | Ferty 2 Blau                 | 15+5+25                                           | 1:0,33                          |
| www.plantafert.de          | Ferty MEGA 1                 | 24+6+12                                           | 1:0,25                          |
|                            | EcoPhos 1                    | 23+4+11                                           | 1:0,17                          |
|                            | EcoPhos 2                    | 16+4+25                                           | 1:0,25                          |
|                            | EcoPhos 3                    | 18+6+18                                           | 1:0,33                          |
|                            | EcoPhos 4                    | 10+5+30                                           | 1:0,33                          |
| YARA                       | Kristalon azur               | 20+5+10                                           | 1:0,25                          |
| www.yara.de                | Kristalon Weißmarke          | 15+5+30                                           | 1:0,33                          |
| ICL                        | Universol Grün               | 23+6+10                                           | 1:0,26                          |
| www.icl-sf.com/de          | Universol Orange             | 16+5+25                                           | 1:0,31                          |
|                            | Peters Professional Grow-Mix | 21+7+10                                           | 1:0,33                          |
|                            | Peters Excel CalMag Grower   | 15+5+15                                           | 1:0,33                          |
| MANNA                      | Manna LIN K spezial          | 19+5+25                                           | 1:0,26                          |
| www.manna.de/profi         | Manna LIN A spezial          | 24+5+11                                           | 1:0,21                          |
|                            | Manna LIN K weiß             | 15+5+25                                           | 1:0,33                          |
|                            | Manna LIN A grün             | 20+5+10                                           | 1:0,25                          |
| Gabi                       | Gabi Plus 5                  | 13+3+7                                            | 1:0,23                          |
| www.omya.com               |                              |                                                   |                                 |
| СОМРО                      | Hakaphos Grün                | 20+5+10                                           | 1:0,25                          |
| www.compo-expert.de        | Hakaphos Soft Elite          | 24+6+12                                           | 1:0,25                          |
|                            | Hakaphos Soft GT             | 15+5+30                                           | 1:0,33                          |
|                            | Novatec Solub N-Max          | 19+5+5                                            | 1:0,26                          |
| Zusammenstellung ohne Ansp | oruch auf Vollständigkeit!   | <u>.</u>                                          |                                 |



## Vorschlag für "allgemeine" Lösung: Anbindung an Stickstoffangebot

Startdüngung mit 0,5 bis 1 g/l Substrat MND mit N :  $P_2O_5 = 1 : 0,6$  bis 1 : 1,2

Guter Start bei erst beginnender Durchwurzelung!

Nachdüngung
 Bewässerungsdüngung,
 diskontinuierliche Flüssigdüngung
 MND mit N: P<sub>2</sub>O<sub>5</sub> = 1: 0,2 bis 0,3

Reduzierung bei höherer P-Grunddüngung oder P-liefernden Substratbestandteilen möglich! Nie ganz aussetzen!

Langzeitdüngung, Depotdüngung mit N : P<sub>2</sub>O<sub>5</sub> von effektiv wirksam = 1 : 0,2 bis <u>0,3</u>

Vorwiegend bei Freilandkulturen Vollbevorratung möglich

## Vorschlag für "allgemeine" Lösung: Anbindung an Stickstoffangebot

Startdüngung mit 0,5 bis 1 g/l Substrat MND mit N :  $P_2O_5 = 1 : 0,6$  bis 1 : 1,2

weiter wie bisher

Nachdüngung
Bewässerungsdüngung,
diskontinuierliche Flüssigdüngung
MND mit N: P<sub>2</sub>O<sub>5</sub> = 1:0,2 bis 0,3

deutliche P-Reduzierung auf ½ bis 1/3 des bisherigen Einsatzes!

Langzeitdüngung, Depotdüngung mit N : P<sub>2</sub>O<sub>5</sub> von effektiv wirksam = 1 : 0,2 bis 0,3

bisher nicht umsetzbar

### Bewertung von Substratanalysen

- anzustreben zu Kulturbeginn:
   50 bis 200 (CAL) bzw. 30 bis 150 (CAT) mg P<sub>2</sub>O<sub>5</sub>/I
- während der Kultur Abnahme möglich, jedoch nie unter 30 (CAL) bzw. 20 (CAT) mg P<sub>2</sub>O<sub>5</sub>/I Substrat
- Zunahme gegenüber dem Wert zum Kulturstart nicht sinnvoll



### Fazit Praxisempfehlung

| Grunddüngung de                   | es Substrates (sofort                         | pflanzenverfügbare Nährstoffe)                                |
|-----------------------------------|-----------------------------------------------|---------------------------------------------------------------|
| N: P <sub>2</sub> O <sub>5</sub>  | 50 bis 200                                    | weiter wie bisher 0,5 bis 1 g/l eines Mehrnährstoffdüngers z. |
| 1:0,6 bis 1:1,2                   | mg P <sub>2</sub> O <sub>5</sub> /I Substrat  | B. 15+10+20, 12+14+24 oder 14+16+18                           |
|                                   |                                               | Nährstoffe aus Substratbestandteilen sind zu                  |
|                                   |                                               | berücksichtigen!                                              |
|                                   |                                               |                                                               |
| Langzeitdüngung,                  | Depotdüngung (Näh                             | rstofffreisetzung während der Kultur)                         |
| N: P <sub>2</sub> O <sub>5</sub>  |                                               | derzeit keine entsprechenden umhüllten Depotdünger, nur       |
| 1:0,2 bis 1:0,3                   |                                               | Langzeitdünger wie Osmoform NXT 22+5+11 u. ä.                 |
|                                   |                                               |                                                               |
|                                   |                                               |                                                               |
| Nachdungung, Be                   | wässerungsdüngung                             |                                                               |
| N : P <sub>2</sub> O <sub>5</sub> | 15 bis 50 mg P <sub>2</sub> O <sub>5</sub> /I | Nutzung eines Mehrnährstoffdüngers mit relativ niedrigem      |
| 1:0,2 bis 1:0,3                   | Düngerlösung                                  | P-Gehalt mit 0,3 bis 1,0 g MND/I Düngerlösung                 |
|                                   |                                               |                                                               |
|                                   |                                               |                                                               |
| Nachdüngung, dis                  | kontinuierlich                                |                                                               |
| N: P <sub>2</sub> O <sub>5</sub>  | 25 bis 100 mg                                 | Nutzung eines Mehrnährstoffdüngers mit relativ niedrigem      |
| 1:0,2 bis 1:0,3                   | P <sub>2</sub> O <sub>5</sub> /I              | P-Gehalt mit 0,5 bis 2,0 g MND/I Düngerlösung im Wechsel      |
|                                   | Düngerlösung                                  | mit Bewässerung ohne Düngung                                  |

