TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Einsatz des Erosionssimulationsmodells Erosion 3D bei der Erosions- und Gewässerschutzplanung

Annekatrin Schob, Anne Michael

Einsatz des Erosionssimulationsmodells Erosion 3D bei der Erosions- und Gewässerschutzplanung

1. Das Modell EROSION 3D

2. Anwendungsbeispiel

Einzugsgebiet der Schiere (Ketzerbachtal) im SE des Mittelsächsischen Lößhügellandes

3. Modellierung der Auswirkungen des Klimawandels

EROSION 3D

ist ein physikalisch begründetes, ereignisbezogenes Modell zur Simulation der Bodenerosion durch Wasser - einschließlich des Eintrages partikelgebundener Schadstoffe in Oberflächengewässer.

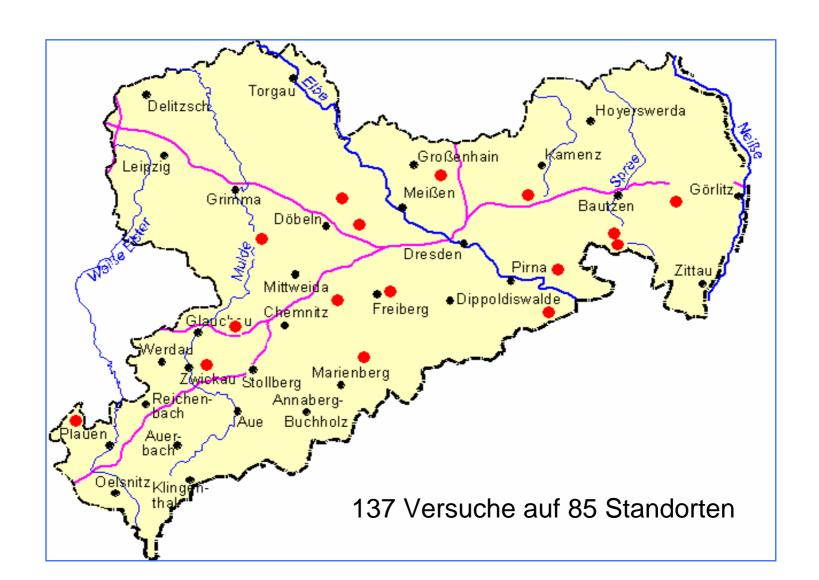
Vorzüge von EROSION 3D für den Einsatz in der Planungspraxis und Umweltberatung

- Prozessbeschreibung auf der Basis einzelner Starkniederschläge
- hohe räumliche und zeitliche Auflösung
- Abbildung von Erosions- und Depositionsbereichen
- Berechnung des partikelgebundenen Nähr- und Schadstoffeinträge in Oberflächengewässer
- rel. einfache Handhabung
- Übertragbarkeit
- gute Dokumentation
- Schnittstellen zu GIS (ArcInfo, ArcView)
- wenige Eingabeparameter, deren Bestimmung beherrschbar ist

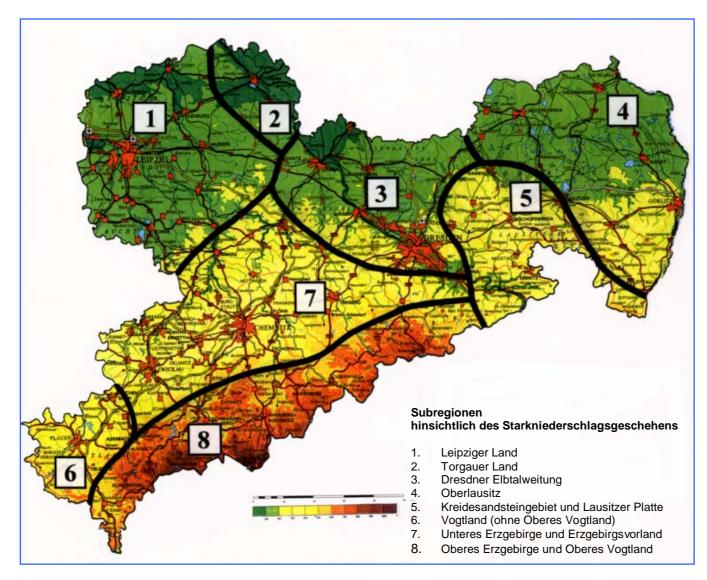
Eingabeparameter EROSION 2D/3D

Reliefparameter¶	Bodenparameter¶	Niederschlagsparameter¶
Ħ	п	Ħ
¶	¶	¶
<u>·EROSION·2D</u> ¶	Korngrößenverteilung·[%]¶	Niederschlagsdauer¶
Ψ	¶	[min]¶
Hanglänge·[m]¶	Lagerungsdichte ¶	¶
¶	in-15-20-cm-Tiefe-[kg/m³]¶	¶
_ Hanggeometrie¶	¶	Niederschlagsintensität¶
у <u>Б</u>	Gehalt-an-organischem¶	[mm/min]¤
	Kohlenstoff-[%]-im-AhbzwAp-	
	Horizont¶	
×××	¶	
(x-·und·y-·Koordinaten)¤	Anfangswassergehalt¶	¤
¶	in-15-20-cm-Tiefe-[Vol%]¶	¤
EROSION:3D¶	¶	
¶	Erosionswiderstand·[N/m²]¶	
Digitales-Geländemodell¶	¶	
	Rauhigkeit¶	
	(MANNINGs·n)·[s/m¹/³]¶	
]	¶	
	Bedeckungsgrad·[%]¶	
	¶	
	Skinfaktor [-]¶	
(Beispiel-V.:WERNER-1995)¤	¤	

Bodenerosionsmessprogramm Sachsen (1992 – 1996) (LFL, LfUG)



Beregnungsanlage


Bestimmung der Bodenparameter

- für die <u>Bodenarten</u>, welche in Sachsen großflächig vorhanden und erfahrungsgemäß von Bodenerosion durch Wasser betroffen sind
- für die <u>Fruchtarten</u>, die auf den erosionsgefährdeten Böden hauptsächlich angebaut werden
- für die <u>typischen Bodenbearbeitungsverfahren</u> (konventionell/konservierend)

Versuchsstandorte in Sachsen

Niederschlagsparameter Sachsen

Extremereignisse mit definierten statistischen Wiederkehrzeiten (2, 5, 10, 20, 50, 100 Jahre)

Referenzjahre mit einer Abfolge von Starkregen ab einer Intensität von 0,1 mm/min

Referenzjahre geben das durchschnittliche Starkniederschlaggeschehen eines Jahres von Mai bis Oktober wieder.

Parameterkatalog/ Handbuch

EROSION 2D/3D

Ein Computermodell zur Simulation der Bodenerosion durch Wasser

Datenbank

Dateminaei iai Etosion 2-D Doachp	arameter			
Eingabeparameter Kontrolle				
Bitte geben Sie folgende Parameter ein:				
Ortsbezeichnung (max. 8 Zeichen):	Methau			
<u>H</u> angabschnitt (ganze Meter):	0 160 m			
Bo <u>d</u> enart:	Ut3 mittel toniger Schluff	J		
<u>N</u> utzung:	Saatbett			
<u>M</u> onat:	Mai			
<u>B</u> earbeitung:	konventionell Pflug, SBK			
Anfangswassergehalt:	mittel/normal			
Boden <u>z</u> ustand:	normal			
Entwicklungszustand:	durchschnittlicher Bestand			
M <u>u</u> lchgehalt:	0 %			
Programm beenden	<u>W</u> eiter>>			

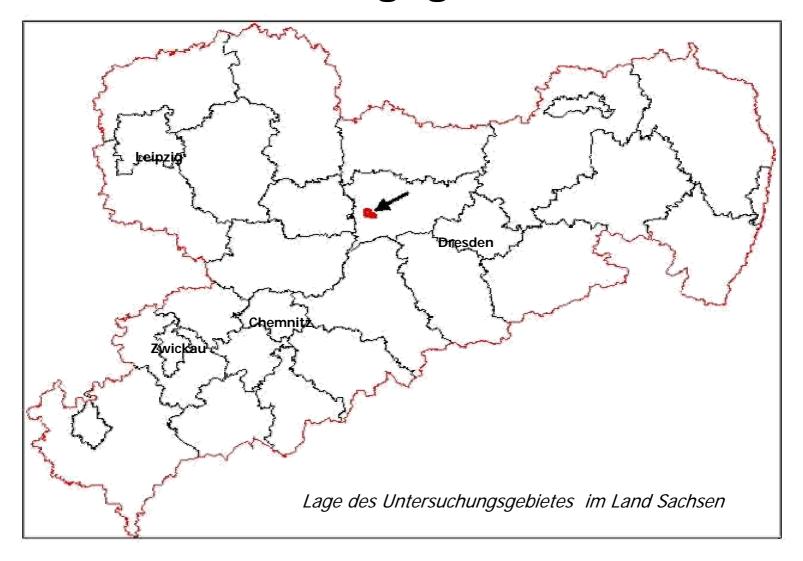
Anwendungen von EROSION 3D

Projekt	Einzugsgebietsgröße	Jahr
Talsperre Malter	ca. 104 km²	1995
Talsperre Klingenberg-Lehnmühle	ca. 90 km²	1999
Talsperre Saidenbach	ca. 70 km²	1999
Speicherbecken Radeburg I	ca. 2 km²	1995
Hohenfels (NATO-Truppenübungspla	atz) ca. 70 km²	1998
Niederstriegis	ca. 4 km²	1996/1999
Lichtenstein	ca. 5 km²	1996
Reichstädt	ca. 12 km²	1996
Leuben-Schleinitz (Flurneuordnungsv	erf.) ca. 25 km²	1997
Leubnitzbach	ca. 5 km²	1998
Stadt Dresden	ca. 330 km²	2000
Jahna EXPO-Projekt	ca. 100 km²	2000
Mehltheuer-Bach	ca. 25 km²	2001
Nelkanitz	ca. 10 km²	2001
Baderitzer Stausee	ca. 15 km²	2003/2005
Mutzschener Wasser	ca. 10 km²	2003/2005
Schiere	ca. 0,4 km²	2005
EMTAL (Weißeritz)	ca. 200 km²	bis 2006

2. Anwendungsbeispiel

Einzugsgebiet der Schiere (Ketzerbachtal) im SE des Mittelsächsischen Lößhügellandes

Aufgabenstellung


Simulation von Erosionsszenarien mittels E3D

- → Prüfung der Situation im August 2002
- → Einbeziehung der historischen Landnutzungsstrukturen
- → Konservierende Bodenbearbeitung der Ackerflächen
- → Modellierung einer durchgeführten Erosionsschutzmaßnahme
- → Prüfung weiterer Erosionsschutzmaßnahmen

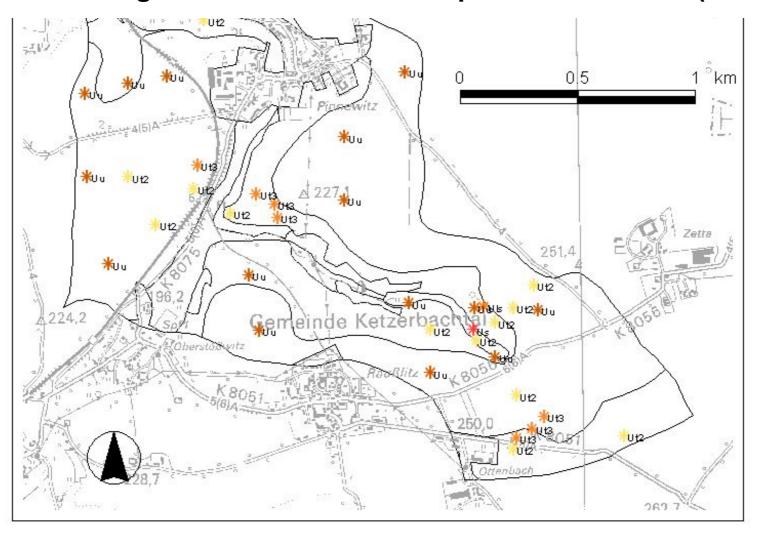
Bewertung der Modellierungsergebnisse

Vorschlag für die Gestaltung des Einzugsgebietes aus bodenschutzfachlicher Sicht

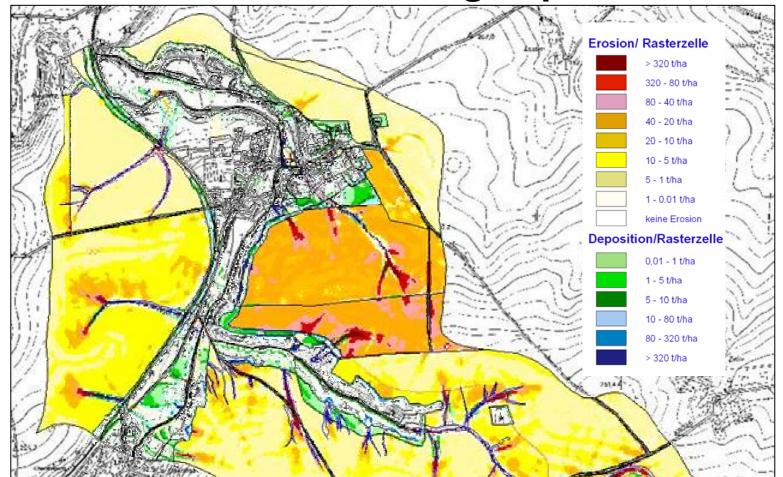
Untersuchungsgebiet Schiere

- Lage in der Lommatzscher Pflege Landkreis Meißen
- Gebiet wird intensiv landwirtschaftlich genutzt

Relief - Geländemodell



Bodenarten

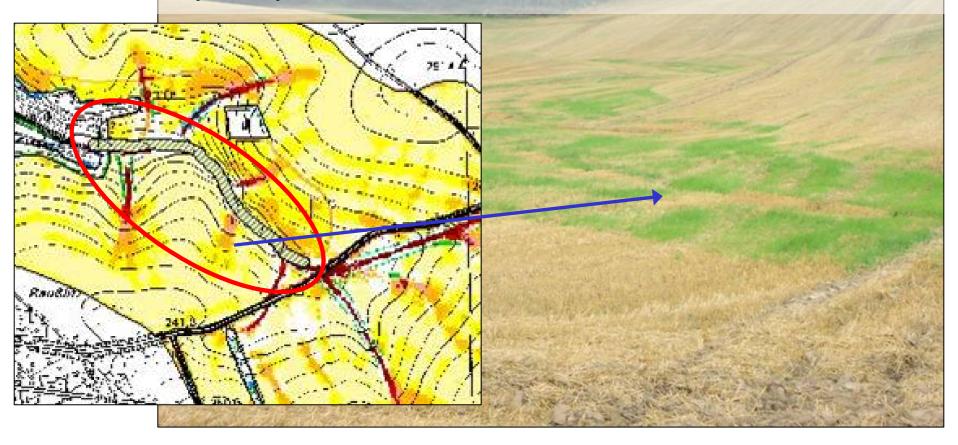

F-18E//" 3", "

Bestimmung der Bodenarten durch Bodenproben Bodenartengrenzen aus Bodenkonzeptkarte M 1: 25.000(LfUG)

1999

Simulation 1 – Landnutzung September 2002

Vergleich Realität – Simulation: deutliche Übereinstimmung der Erosions- und Depositionsbereiche

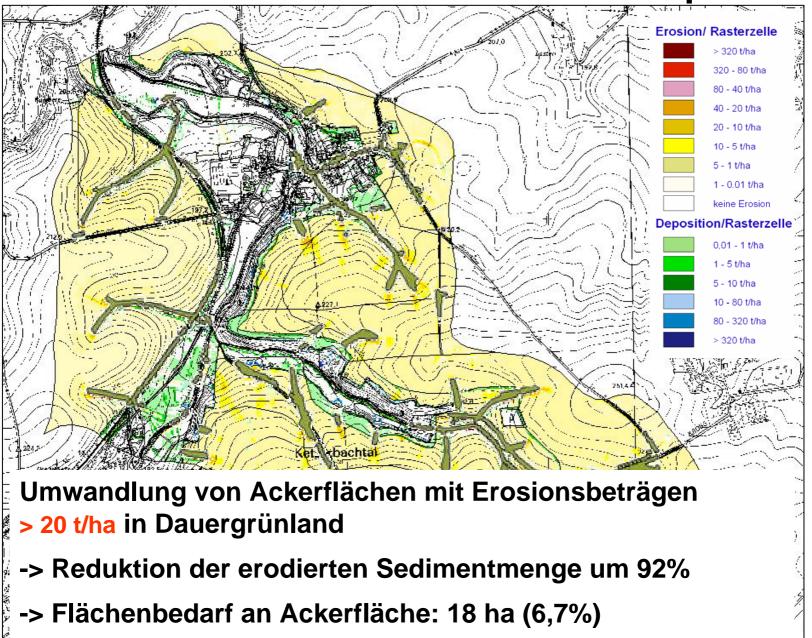

Ursachen für Verschiebungen: Ungenauigkeiten des digitalen Geländemodells

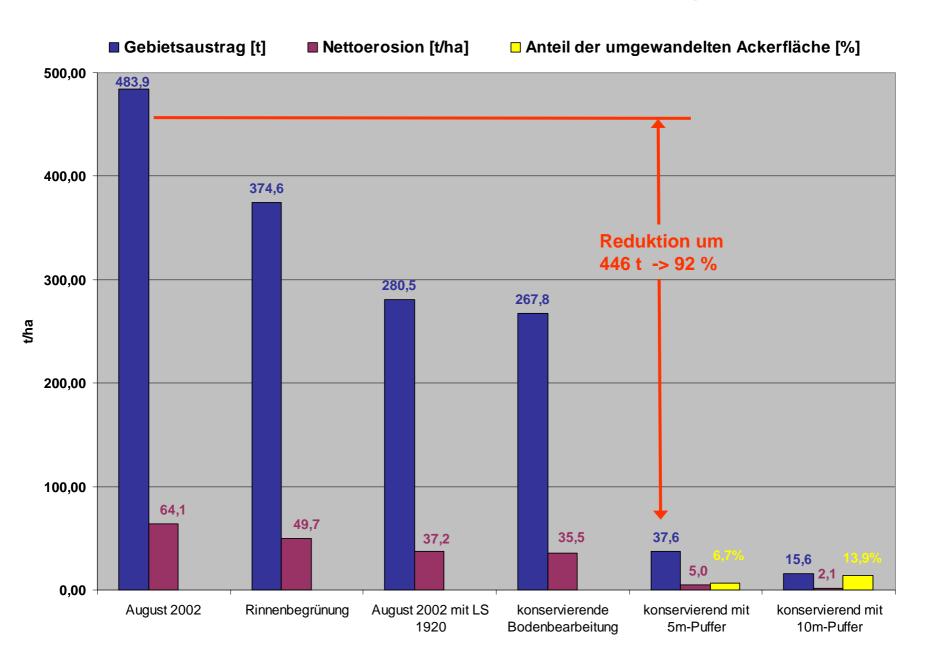
Simulation 2 - Maßnahmenprüfung

Situation im Mai 2003 Prüfung einer umgesetzten Erosionsschutzmaßnahme ->Tiefenlinienbegrünung

Simulation 2 - Maßnahmenprüfung

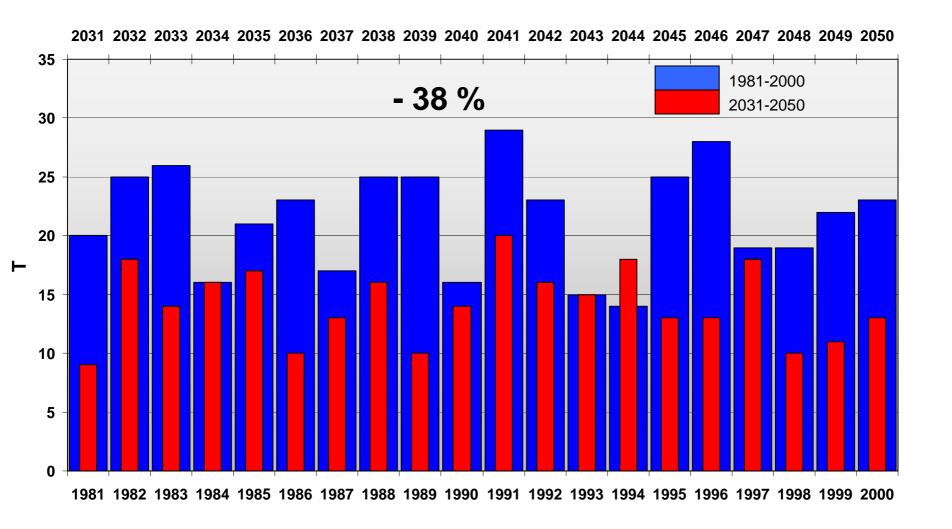

- Situation im September 2004 nach Anlegen eines 'grassedwaterways' (Breite 24m)
- Verminderung der Sedimentmenge um 30% bei Flächenbedarf von 1,42 ha (0,53%)


Simulation 2 - Maßnahmenprüfung


Simulation 3 - Konservierende Bodenbearbeitung

Simulation 4 – Erosionsschutzkonzeption

Überblick über Simulationsergebnisse

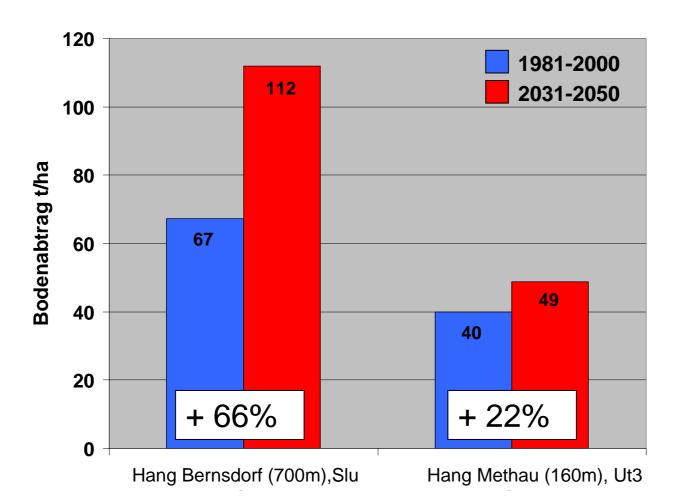


Ergebnisse


- 1. Landschaftsszenarien zeigen die Wirkung von aktiven (Bewirtschaftungsform) und passiven Erosionsschutzmaßnahmen
- 2. Simulationen mit EROSION 3D ermöglichen die Identifizierung und Quantifizierung von erosionsgefährdeten Bereichen
- 3. Passive Erosionsschutzmaßnahmen (Nutzungsumwandlungen) können hocheffizient eingesetzt werden -> Flächenbedarf an Ackerfläche kann so gering wie möglich gehalten werden

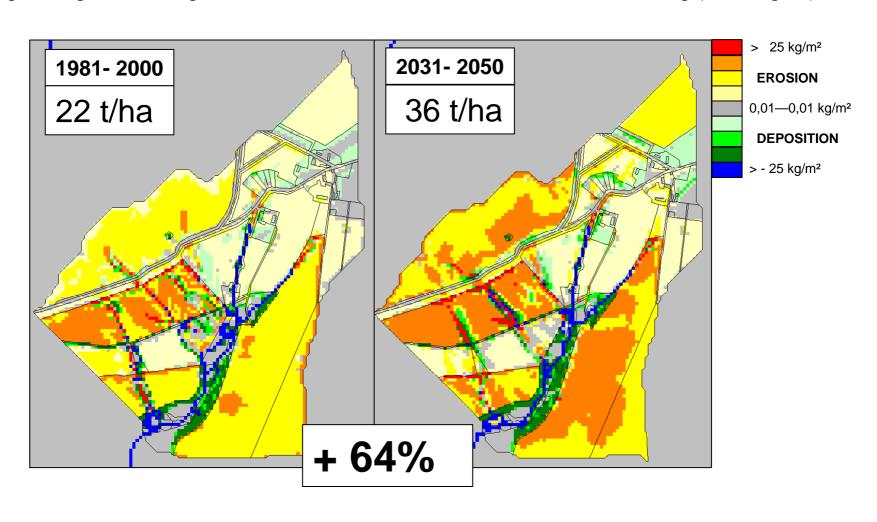
3. Modellierung der Auswirkungen des Klimawandels auf den Bodenabtrag

Vergleich der Anzahl der Niederschlagsereignisse mit Intensitäten > 0.1 mm/min für Juni, Juli, August 1981-2000 und 2031-2050 Station Chemnitz


Vergleich der mittleren maximalen Niederschlagsintensitäten [mm/min] für Juni, Juli, August 1981-2000 und 2031-2050 Chemnitz

Simulationsergebnisse EROSION 2D:

Einfluss der erhöhten Niederschlagsintensitäten auf den Bodenabtrag für die Hänge Berndorf und Methau (Juni-August)


- 3-gliederige Fruchtfolge, konventionelle Bodenbearbeitung

Simulationsergebnisse EROSION 3D:

Einfluss der erhöhten Niederschlagsintensitäten auf den Bodenabtrag für das Einzugsgebiet Hölzelbergbach/Saidenbachtalsperre (Su4)

9-gliederige Fruchtfolge, konventionelle/konservierende Bodenbearbeitung (Juli-August)

Simulation des Einflusses eines früheren Vegetationsbeginns/früheren Ernteterminen

Simulation des Einflusses von Trockenperioden/Unwetterschäden

Simulation veränderter Fruchtfolgen und Landnutzung - bedingt durch den Klimawandel oder/und veränderte förderpolitische Maßnahmen und Gesetze

Vielen Dank!

