

Das Lebensministerium

Strategien zur Minderung des Stoffeintrages in Oberflächengewässer

Michael Zimmermann

Sächsische Landesanstalt für Landwirtschaft

Gliederung

- 1. Bodenerosion Handlungsbedarf in Sachsen
- 2. Umsetzungsstrategien gegen Erosion durch Wasser
- 3. Ergebnisse von Bodenabtragsuntersuchungen
- 4. Schlussfolgerungen

1. Bodenerosion - Handlungsbedarf in Sachsen

Handlungsfeld Minderung bzw. Verhinderung der Wassererosion

Bodenerosion in Sachsen

- Rund 60 % der Ackerflächen (~ 450 Tsd. ha) sind potenziell durch Wassererosion gefährdet.
- Rund 20 % der Ackerflächen (~ 150 Tsd. ha) sind potenziell durch Winderosion gefährdet.

Erfordernis

Durchführung umfassender 1992
Vorsorgemaßnahmen gegen Erosion
zum Schutz von Boden und Gewässern

Quelle: LfUG, 2005

2. Umsetzungsstrategien gegen Erosion durch Wasser

Hauptursache der Wassererosion auf Ackerflächen: Oberflächenverschlämmung durch Bodenaggregatzerfall

Minderung der Wassererosion auf Ackerflächen durch:

- 1. Vermeiden von infiltrationshemmender Bodenverschlämmung
- 2. Vermeiden von infiltrationshemmenden Bodenverdichtungen

Wirksamste Maßnahme

Dauerhaft konservierende Bodenbearbeitung im Fruchtfolgeverlauf

Folgen der konventionellen bodenwendenden Bodenbearbeitung mit dem Pflug

Oberflächlicher Wasserabfluss und Bodenabtrag infolge einer infiltrationshemmenden Bodenverschlämmung

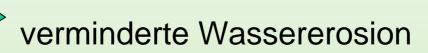
Konservierende Bodenbearbeitung mit Mulchsaat:

 Erosionsminderung/-verhinderung durch Schutz der Oberfläche vor Verschlämmung

Vergleich verschiedener Parameter nach konventioneller und achtjährig konservierender Bodenbearbeitung bzw. Direktsaat

	Pflug	Konser- vierend I	Konser- vierend II	Direkt- saat
Mulchbedeckung [%]	1	13	16	77
Wasserstabile Aggregate [%]	20	22	23	25
Humus* [%]	2,0	2,2	2,6	2,5
Mikrobielle Biomasse [μg C _{mic} / g TS Boden]*	415	626	624	575
Regenwürmer [Anzahl · m ⁻²]	125	312	172	358
davon Tiefgräber (L. terrestris]	4	37	29	29
Makroporen [Zahl · m ⁻²]	264	493	1022	775

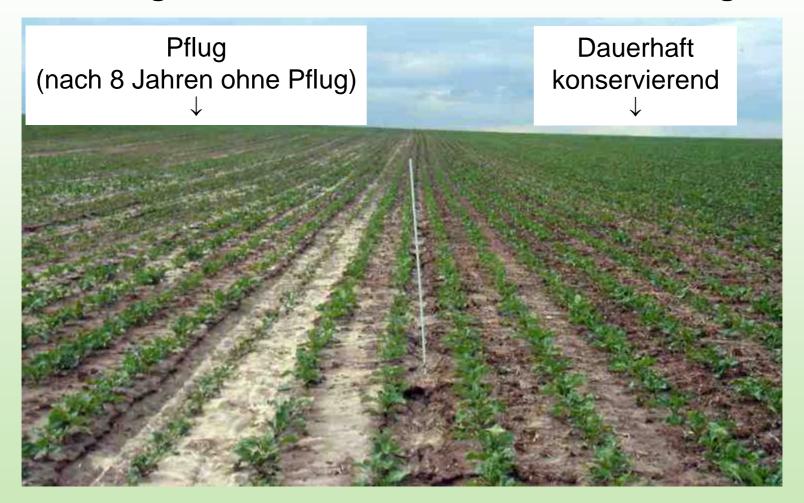
^{*} Bodenschicht 0 - 5 cm


Folgewirkungen hoher biologischer Aktivität in der Ackerkrume

hohe Aggregatstabilität

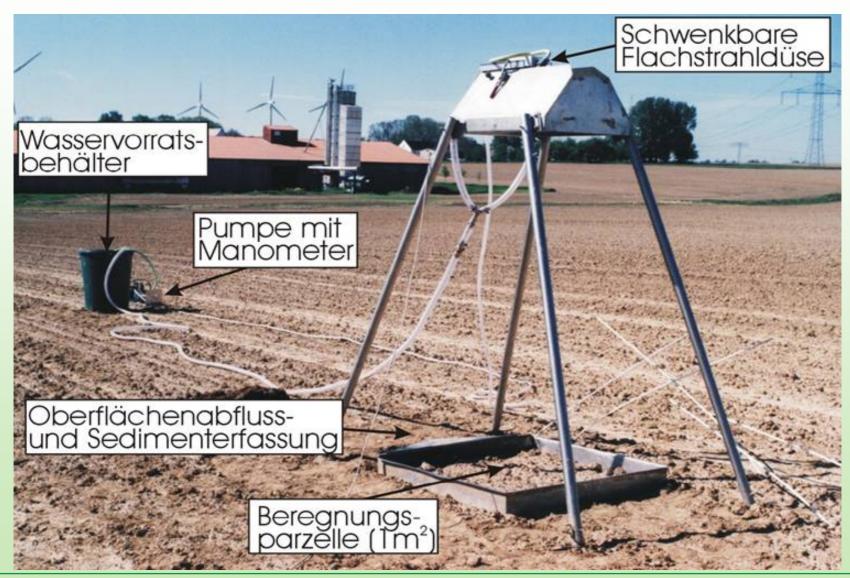
geringe Verschlämmung

Voraussetzung: Belassen von Mulchmaterial an der Bodenoberfläche


Vorsorge gegen Bodenerosion durch Wasser als Beitrag zum Gewässerschutz

- Erosion lässt sich am besten durch die so genannte konservierende Bodenbearbeitung mit Mulchsaat verhindern.
- Der Boden wird gelockert aber nicht gepflügt (d. h. gewendet), so dass er in seinem Aufbau "konserviert" wird. Auf der Bodenoberfläche verbleibt eine schützende Mulchbedeckung.
- Durch modernste Mulch-Sätechnik kann durch diese Mulchschicht hindurch der neue Pflanzenbestand gesät werden.

Bodenerosion nach einem Gewitter nach konventioneller bzw. konservierender Bearbeitung (Niederschlag: 55 mm/45 min, Sächsisches Lößhügelland)


3. Ergebnisse von Bodenabtragsuntersuchungen

Beregnungsanlage

Ergebnisse von Bodenabtragsmessungen im Erzgebirge

Untersuchungsstandort

Erzgebirge

Bodenart: SI3, Bodentyp: Braunerde

Bodenbearbeitungsvarianten: Pflug, Konservierend, 2 Jahre

Beregnungsversuche

Transportable Kleinberegnungsanlage mit Flachstrahldüse

Beregnungsintensität: 1,9 mm * min⁻¹, Beregnungsdauer: 20 Minuten

→ 38 mm Niederschlag

Hangneigung: 10 %

Abtragserfassung

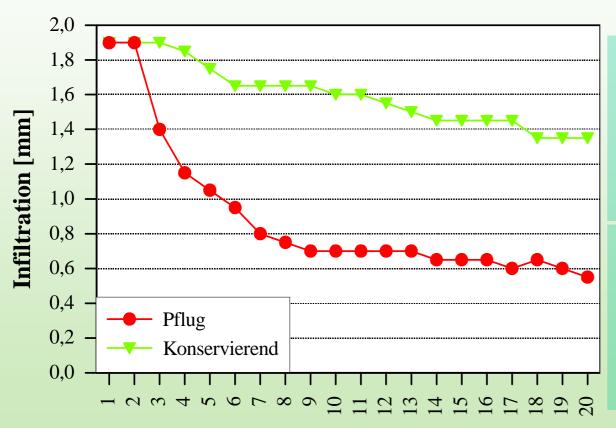
Kontinuierliche Erfassung von abgeflossenem Wasser und abgetragenem Boden

Ermittelte Parameter: Oberflächenabfluss

Bodenabtrag

P-Austrag

Bodenbedeckung, Stabilität der Bodenaggregate, Infiltrationsrate und Bodenabtrag bei Beregnungsversuchen


Standort: Lippersdorf, 18.05.2000

	Pflug	Kons.
Bedeckungsgrad [%]	74	78
Aggregatstabilität [rel.]	100	117
Infiltrationsrate [%]	48,2	84,8
Bodenabtrag [g/m²]	140,5	17,0

Wasserinfiltration und Bodenabtrag auf gepflügter und konservierend bearbeiteter Fläche

<u>Infiltrationsraten</u>

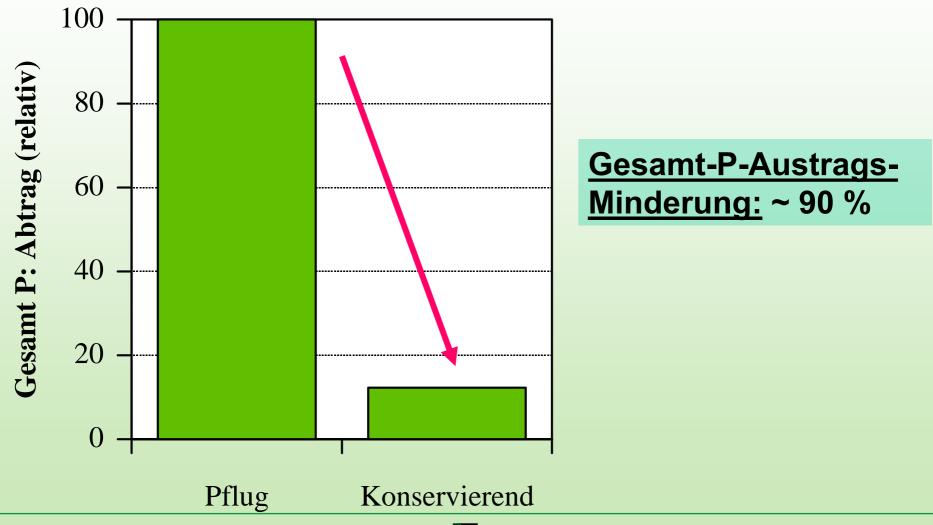
Pflug: 48 %

Konservierend: 85 %

Bodenabtrag

Pflug: 141 g/m²

Konservierend: 17 g/m²


Beregnungsminute

Gesamt-P-Austragsminderung durch konservierende Bodenbearbeitung (Pflug = 100 %) (Erzgebirge, Beregnungsmenge: 38 mm in 20 Minuten)

Gewässerschutz durch Minderung der Wassererosion – Sachstand 2006 in Sachsen

 Auf über 246.000 ha setzen Landwirte in Sachsen nachweislich die besonders boden- und gewässerschonende Mulchsaat ein. Das entspricht rund 34 % der Ackerfläche Sachsens.

Der Freistaat Sachsen f\u00f6rderte dieses neue Anbauverfahren im Rahmen des Agrarumweltprogramms "Umweltgerechte Landwirtschaft" bis zum Jahr 2006. Eine weitere F\u00f6rderung ist im ELER-Programm ist vorgesehen.

Anpassungsbedarf beim neuartigen Verfahren der konservierenden Bodenbearbeitung

- Strohmanagement (Häckselqualität, Strohverteilung)
- Stoppel- und Grundbodenbearbeitung sowie Saatbettbearbeitung (Notwendigkeit, Geräteauswahl..)
- Entwicklung und Einsatz funktionsfähiger Mulchsaat- bzw.
 Direktsaattechnik
- Fruchtfolgegestaltung
- Durchwuchs- und Unkrautmanagement (z.B. Trespe, Distel)
- Krankheits- (z. B. Fusarium, DTR) und Schädlingsmanagement (z. B. Schnecken, Mäuse)
- Düngungsstrategie....

Strategien zur weiteren Förderung bodenschonender Maßnahmen in Sachsen

- Beratung
 - Berater der Ämter für Landwirtschaft
 - Internetportal "Boden" (www.landwirtschaft.sachsen.de/lfl)
 - Maschinenvorführungen und Feldtage
- Akzeptanzsteigerung durch Demonstration der Wirkungen der konservierende Bodenbearbeitung (Feldversuche usw.)
- Arbeitskreise (z.B. AK Konservierende Bodenbearbeitung)
- Fachinformationen durch Konsultationsbetriebe

4. Schlussfolgerungen

- Die dauerhaft konservierende Bodenbearbeitung ist die zentrale Maßnahme eines nachhaltigen Erosionsschutzes mit direkten Wirkungen für den Gewässerschutz.
- Die Neuartigkeit der dauerhaft konservierenden Bodenbearbeitung macht die Erarbeitung acker- und pflanzenbaulicher Anpassungsstrategien erforderlich.
- Beregnungsexperimente belegen, dass bei konservierender Bodenbearbeitung sowohl Oberflächenabfluss als auch Boden- und P-Abträge deutlich gesenkt werden.
- Zur Optimierung der bodenschützenden Wirkungen der konservierenden Bodenbearbeitung müssen ihre Wirkungen auf den Boden exakt beschrieben werden.

